IndieGame/client/Packages/com.unity.inputsystem@1.7.0/InputSystem/Actions/InputActionState.cs
DOBEST\zhaoyingjie f242607587 初始化工程
2024-10-11 10:12:15 +08:00

4511 lines
213 KiB
C#

using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using Unity.Collections;
using Unity.Collections.LowLevel.Unsafe;
using UnityEngine.InputSystem.Controls;
using UnityEngine.InputSystem.LowLevel;
using UnityEngine.InputSystem.Utilities;
using UnityEngine.Profiling;
////TODO: now that we can bind to controls by display name, we need to re-resolve controls when those change (e.g. when the keyboard layout changes)
////TODO: remove direct references to InputManager
////TODO: make sure controls in per-action and per-map control arrays are unique (the internal arrays are probably okay to have duplicates)
////REVIEW: should the default interaction be an *explicit* interaction?
////REVIEW: should "pass-through" be an interaction instead of a setting on actions?
////REVIEW: allow setup where state monitor is enabled but action is disabled?
namespace UnityEngine.InputSystem
{
using InputActionListener = Action<InputAction.CallbackContext>;
/// <summary>
/// Dynamic execution state of one or more <see cref="InputActionMap">action maps</see> and
/// all the actions they contain.
/// </summary>
/// <remarks>
/// The aim of this class is to both put all the dynamic execution state into one place as well
/// as to organize state in tight, GC-optimized arrays. Also, by moving state out of individual
/// <see cref="InputActionMap">action maps</see>, we can combine the state of several maps
/// into one single object with a single set of arrays. Ideally, if you have a single action
/// asset in the game, you get a single InputActionState that contains the entire dynamic
/// execution state for your game's actions.
///
/// Note that this class allocates unmanaged memory. It has to be disposed of or it will leak
/// memory!
///
/// An instance of this class is also used for singleton actions by means of the hidden action
/// map we create for those actions. In that case, there will be both a hidden map instance
/// as well as an action state for every separate singleton action. This makes singleton actions
/// relatively expensive.
/// </remarks>
internal unsafe class InputActionState : IInputStateChangeMonitor, ICloneable, IDisposable
{
public const int kInvalidIndex = -1;
/// <summary>
/// Array of all maps added to the state.
/// </summary>
public InputActionMap[] maps;
/// <summary>
/// List of all resolved controls.
/// </summary>
/// <remarks>
/// As we don't know in advance how many controls a binding may match (if any), we bump the size of
/// this array in increments during resolution. This means it may be end up being larger than the total
/// number of used controls and have empty entries at the end. Use <see cref="UnmanagedMemory.controlCount"/> and not
/// <c>.Length</c> to find the actual number of controls.
///
/// All bound controls are included in the array regardless of whether only a partial set of actions
/// is currently enabled. What ultimately decides whether controls get triggered or not is whether we
/// have installed state monitors for them or not.
/// </remarks>
public InputControl[] controls;
/// <summary>
/// Array of instantiated interaction objects.
/// </summary>
/// <remarks>
/// Every binding that has interactions corresponds to a slice of this array.
///
/// Indices match between this and interaction states in <see cref="memory"/>.
/// </remarks>
public IInputInteraction[] interactions;
/// <summary>
/// Processor objects instantiated for the bindings in the state.
/// </summary>
public InputProcessor[] processors;
/// <summary>
/// Array of instantiated composite objects.
/// </summary>
public InputBindingComposite[] composites;
public int totalProcessorCount;
public int totalCompositeCount => memory.compositeCount;
public int totalMapCount => memory.mapCount;
public int totalActionCount => memory.actionCount;
public int totalBindingCount => memory.bindingCount;
public int totalInteractionCount => memory.interactionCount;
public int totalControlCount => memory.controlCount;
/// <summary>
/// Block of unmanaged memory that holds the dynamic execution state of the actions and their controls.
/// </summary>
/// <remarks>
/// We keep several arrays of structured data in a single block of unmanaged memory.
/// </remarks>
public UnmanagedMemory memory;
public ActionMapIndices* mapIndices => memory.mapIndices;
public TriggerState* actionStates => memory.actionStates;
public BindingState* bindingStates => memory.bindingStates;
public InteractionState* interactionStates => memory.interactionStates;
public int* controlIndexToBindingIndex => memory.controlIndexToBindingIndex;
public ushort* controlGroupingAndComplexity => memory.controlGroupingAndComplexity;
public float* controlMagnitudes => memory.controlMagnitudes;
public uint* enabledControls => (uint*)memory.enabledControls;
public bool isProcessingControlStateChange => m_InProcessControlStateChange;
private bool m_OnBeforeUpdateHooked;
private bool m_OnAfterUpdateHooked;
private bool m_InProcessControlStateChange;
private InputEventPtr m_CurrentlyProcessingThisEvent;
private Action m_OnBeforeUpdateDelegate;
private Action m_OnAfterUpdateDelegate;
/// <summary>
/// Initialize execution state with given resolved binding information.
/// </summary>
/// <param name="resolver"></param>
public void Initialize(InputBindingResolver resolver)
{
ClaimDataFrom(resolver);
AddToGlobalList();
}
private void ComputeControlGroupingIfNecessary()
{
if (memory.controlGroupingInitialized)
return;
// If shortcut support is disabled, we simply put put all bindings at complexity=1 and
// in their own group.
var disableControlGrouping = !InputSystem.settings.shortcutKeysConsumeInput;
var currentGroup = 1u;
for (var i = 0; i < totalControlCount; ++i)
{
var control = controls[i];
var bindingIndex = controlIndexToBindingIndex[i];
ref var binding = ref bindingStates[bindingIndex];
////REVIEW: take processors and interactions into account??
// Compute complexity.
var complexity = 1;
if (binding.isPartOfComposite && !disableControlGrouping)
{
var compositeBindingIndex = binding.compositeOrCompositeBindingIndex;
for (var n = compositeBindingIndex + 1; n < totalBindingCount; ++n)
{
ref var partBinding = ref bindingStates[n];
if (!partBinding.isPartOfComposite || partBinding.compositeOrCompositeBindingIndex != compositeBindingIndex)
break;
++complexity;
}
}
controlGroupingAndComplexity[i * 2 + 1] = (ushort)complexity;
// Compute grouping. If already set, skip.
if (controlGroupingAndComplexity[i * 2] == 0)
{
if (!disableControlGrouping)
{
for (var n = 0; n < totalControlCount; ++n)
{
// NOTE: We could compute group numbers based on device index + control offsets
// and thus make them work globally in a stable way. But we'd need a mechanism
// to then determine ordering of actions globally such that it is clear which
// action gets a first shot at an input.
var otherControl = controls[n];
if (control != otherControl)
continue;
controlGroupingAndComplexity[n * 2] = (ushort)currentGroup;
}
}
controlGroupingAndComplexity[i * 2] = (ushort)currentGroup;
++currentGroup;
}
}
memory.controlGroupingInitialized = true;
}
public void ClaimDataFrom(InputBindingResolver resolver)
{
totalProcessorCount = resolver.totalProcessorCount;
maps = resolver.maps;
interactions = resolver.interactions;
processors = resolver.processors;
composites = resolver.composites;
controls = resolver.controls;
memory = resolver.memory;
resolver.memory = new UnmanagedMemory();
ComputeControlGroupingIfNecessary();
}
~InputActionState()
{
Destroy(isFinalizing: true);
}
public void Dispose()
{
Destroy();
}
private void Destroy(bool isFinalizing = false)
{
Debug.Assert(!isProcessingControlStateChange, "Must not destroy InputActionState while executing an action callback within it");
if (!isFinalizing)
{
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
// Remove state change monitors.
if (map.enabled)
DisableControls(i, mapIndices[i].controlStartIndex, mapIndices[i].controlCount);
if (map.m_Asset != null)
map.m_Asset.m_SharedStateForAllMaps = null;
map.m_State = null;
map.m_MapIndexInState = kInvalidIndex;
map.m_EnabledActionsCount = 0;
// Reset action indices on the map's actions.
var actions = map.m_Actions;
if (actions != null)
{
for (var n = 0; n < actions.Length; ++n)
actions[n].m_ActionIndexInState = kInvalidIndex;
}
}
RemoveMapFromGlobalList();
}
memory.Dispose();
}
/// <summary>
/// Create a copy of the state.
/// </summary>
/// <returns></returns>
/// <remarks>
/// The copy is non-functional in so far as it cannot be used to keep track of changes made to
/// any associated actions. However, it can be used to freeze the binding resolution state of
/// a particular set of enabled actions. This is used by <see cref="InputActionTrace"/>.
/// </remarks>
public InputActionState Clone()
{
return new InputActionState
{
maps = ArrayHelpers.Copy(maps),
controls = ArrayHelpers.Copy(controls),
interactions = ArrayHelpers.Copy(interactions),
processors = ArrayHelpers.Copy(processors),
composites = ArrayHelpers.Copy(composites),
totalProcessorCount = totalProcessorCount,
memory = memory.Clone(),
};
}
object ICloneable.Clone()
{
return Clone();
}
/// <summary>
/// Check if the state is currently using a control from the given device.
/// </summary>
/// <param name="device">Any input device.</param>
/// <returns>True if any of the maps in the state has the device in its <see cref="InputActionMap.devices"/>
/// list or if any of the device's controls are contained in <see cref="controls"/>.</returns>
private bool IsUsingDevice(InputDevice device)
{
Debug.Assert(device != null, "Device is null");
// If all maps have device restrictions, the device must be in it
// or we're not using it.
var haveMapsWithoutDeviceRestrictions = false;
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
var devicesForMap = map.devices;
if (devicesForMap == null)
haveMapsWithoutDeviceRestrictions = true;
else if (devicesForMap.Value.Contains(device))
return true;
}
if (!haveMapsWithoutDeviceRestrictions)
return false;
// Check all our controls one by one.
for (var i = 0; i < totalControlCount; ++i)
if (controls[i].device == device)
return true;
return false;
}
// Check if the state would use a control from the given device.
private bool CanUseDevice(InputDevice device)
{
Debug.Assert(device != null, "Device is null");
// If all maps have device restrictions and the device isn't in them, we can't use
// the device.
var haveMapWithoutDeviceRestrictions = false;
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
var devicesForMap = map.devices;
if (devicesForMap == null)
haveMapWithoutDeviceRestrictions = true;
else if (devicesForMap.Value.Contains(device))
return true;
}
if (!haveMapWithoutDeviceRestrictions)
return false;
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
var bindings = map.m_Bindings;
if (bindings == null)
continue;
var bindingCount = bindings.Length;
for (var n = 0; n < bindingCount; ++n)
{
if (InputControlPath.TryFindControl(device, bindings[n].effectivePath) != null)
return true;
}
}
return false;
}
/// <summary>
/// Check whether the state has any actions that are currently enabled.
/// </summary>
/// <returns></returns>
public bool HasEnabledActions()
{
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
if (map.enabled)
return true;
}
return false;
}
private void FinishBindingCompositeSetups()
{
for (var i = 0; i < totalBindingCount; ++i)
{
ref var binding = ref bindingStates[i];
if (!binding.isComposite || binding.compositeOrCompositeBindingIndex == -1)
continue;
var composite = composites[binding.compositeOrCompositeBindingIndex];
var context = new InputBindingCompositeContext { m_State = this, m_BindingIndex = i };
composite.CallFinishSetup(ref context);
}
}
internal void PrepareForBindingReResolution(bool needFullResolve,
ref InputControlList<InputControl> activeControls, ref bool hasEnabledActions)
{
// Let listeners know we're about to modify bindings.
var needToCloneActiveControls = false;
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
if (map.enabled)
{
hasEnabledActions = true;
if (needFullResolve)
{
// For a full-resolve, we temporarily disable all actions and then re-enable
// all that were enabled after bindings have been resolved (plus we also flip on
// initial state checks for those actions to make sure they react right away
// to whatever state controls are in).
DisableAllActions(map);
}
else
{
// Cancel any action that is driven from a control we will lose when we re-resolve.
// For any other on-going action, save active controls.
foreach (var action in map.actions)
{
if (!action.phase.IsInProgress())
continue;
// Skip action's that are in progress but whose active control is not affected
// by the changes that lead to re-resolution.
if (action.ActiveControlIsValid(action.activeControl))
{
// As part of re-resolving, we're losing m_State.controls. So, while we retain
// the current execution state of the method including the index of the currently
// active control, we lose the actual references to the control.
// Thus, we retain an explicit list of active controls into which we *only* copy
// those few controls that are currently active. Also, this list is kept in unmanaged
// memory so we don't add an additional GC allocation here.
if (needToCloneActiveControls == false)
{
activeControls = new InputControlList<InputControl>(Allocator.Temp);
activeControls.Resize(totalControlCount);
needToCloneActiveControls = true;
}
ref var actionState = ref actionStates[action.m_ActionIndexInState];
var activeControlIndex = actionState.controlIndex;
activeControls[activeControlIndex] = controls[activeControlIndex];
// Also save active controls for other ongoing interactions.
var bindingState = bindingStates[actionState.bindingIndex];
for (var n = 0; n < bindingState.interactionCount; ++n)
{
var interactionIndex = bindingState.interactionStartIndex + n;
if (!interactionStates[interactionIndex].phase.IsInProgress())
continue;
activeControlIndex = interactionStates[interactionIndex]
.triggerControlIndex;
if (action.ActiveControlIsValid(controls[activeControlIndex]))
activeControls[activeControlIndex] = controls[activeControlIndex];
else
ResetInteractionState(interactionIndex);
}
}
else
{
ResetActionState(action.m_ActionIndexInState);
}
}
// NOTE: Removing state monitors here also means we're terminating any pending
// timeouts. However, we have information in the action state about how much
// is time is remaining on each of them so we can resume them later.
DisableControls(map);
}
}
map.ClearCachedActionData(onlyControls: !needFullResolve);
}
NotifyListenersOfActionChange(InputActionChange.BoundControlsAboutToChange);
}
public void FinishBindingResolution(bool hasEnabledActions, UnmanagedMemory oldMemory, InputControlList<InputControl> activeControls, bool isFullResolve)
{
// Fire InputBindingComposite.FinishSetup() calls.
FinishBindingCompositeSetups();
// Sync action states between the old and the new state. This also ensures
// that any action that was already in progress just keeps going -- except
// if we actually lost the control that was driving it.
if (hasEnabledActions)
RestoreActionStatesAfterReResolvingBindings(oldMemory, activeControls, isFullResolve);
else
NotifyListenersOfActionChange(InputActionChange.BoundControlsChanged);
}
/// <summary>
/// Synchronize the current action states based on what they were before.
/// </summary>
/// <param name="oldState"></param>
/// <remarks>
/// We do this when we have to temporarily disable actions in order to re-resolve bindings.
///
/// Note that we do NOT restore action states perfectly. I.e. will we will not preserve trigger
/// and interaction states exactly to what they were before. Given that the bound controls may change,
/// it would be non-trivial to reliably correlate the old and the new state. Instead, we simply
/// reenable all the actions and controls that were enabled before and then let the next update
/// take it from there.
/// </remarks>
private void RestoreActionStatesAfterReResolvingBindings(UnmanagedMemory oldState, InputControlList<InputControl> activeControls, bool isFullResolve)
{
Debug.Assert(oldState.isAllocated, "Old state contains no memory");
// No maps and/or actions must have been added, replaced, or removed.
//
// IF
// isFullResolve==true:
// - No bindings must have been added, replaced, or removed or touched in any other way.
// - The only thing that is allowed to have changed is the list of controls used by the actions.
// - Binding masks must not have changed.
//
// isFullResolve==false:
// - Bindings may have been added, replaced, modified, and/or removed.
// - Also, the list of controls may have changed.
// - Binding masks may have changed.
//
// This means that when we compare UnmanagedMemory from before and after:
// - Map indices are identical.
// - Action indices are identical.
// - Binding indices may have changed arbitrarily.
// - Control indices may have changed arbitrarily (controls[] before and after need not relate at all).
// - Processor indices may have changed arbitrarily.
// - Interaction indices may have changed arbitrarily.
//
// HOWEVER, if isFullResolve==false, then ONLY control indices may have changed. All other
// indices must have remained unchanged.
Debug.Assert(oldState.actionCount == memory.actionCount, "Action count in old and new state must be the same");
Debug.Assert(oldState.mapCount == memory.mapCount, "Map count in old and new state must be the same");
if (!isFullResolve)
{
Debug.Assert(oldState.bindingCount == memory.bindingCount, "Binding count in old and new state must be the same");
Debug.Assert(oldState.interactionCount == memory.interactionCount, "Interaction count in old and new state must be the same");
Debug.Assert(oldState.compositeCount == memory.compositeCount, "Composite count in old and new state must be the same");
}
// Restore action states.
for (var actionIndex = 0; actionIndex < totalActionCount; ++actionIndex)
{
ref var oldActionState = ref oldState.actionStates[actionIndex];
ref var newActionState = ref actionStates[actionIndex];
newActionState.lastCanceledInUpdate = oldActionState.lastCanceledInUpdate;
newActionState.lastPerformedInUpdate = oldActionState.lastPerformedInUpdate;
newActionState.pressedInUpdate = oldActionState.pressedInUpdate;
newActionState.releasedInUpdate = oldActionState.releasedInUpdate;
newActionState.startTime = oldActionState.startTime;
if (oldActionState.phase != InputActionPhase.Disabled)
{
// In this step, we only put enabled actions into Waiting phase.
// When isFullResolve==false, we will restore the actual phase from
// before when we look at bindings further down in the code.
newActionState.phase = InputActionPhase.Waiting;
// In a full resolve, we actually disable any action we find enabled.
// So count any action we reenable here.
if (isFullResolve)
++maps[newActionState.mapIndex].m_EnabledActionsCount;
}
}
// Restore binding (and interaction) states.
for (var bindingIndex = 0; bindingIndex < totalBindingCount; ++bindingIndex)
{
ref var newBindingState = ref memory.bindingStates[bindingIndex];
if (newBindingState.isPartOfComposite)
{
// Bindings that are part of composites get enabled through the composite itself.
continue;
}
// For composites, bring magnitudes along.
if (newBindingState.isComposite)
{
var compositeIndex = newBindingState.compositeOrCompositeBindingIndex;
memory.compositeMagnitudes[compositeIndex] = oldState.compositeMagnitudes[compositeIndex];
}
var actionIndex = newBindingState.actionIndex;
if (actionIndex == kInvalidIndex)
{
// Binding is not targeting an action.
continue;
}
// Skip if action is disabled.
ref var newActionState = ref actionStates[actionIndex];
if (newActionState.isDisabled)
continue;
// For all bindings to actions that are enabled, we flip on initial state checks to make sure
// we're checking the action's current state against the most up-to-date actuation state of controls.
// NOTE: We're only restore execution state for currently active controls. So, if there were multiple
// concurrent actuations on an action that was in progress, we let initial state checks restore
// relevant state.
newBindingState.initialStateCheckPending = newBindingState.wantsInitialStateCheck;
// Enable all controls on the binding.
EnableControls(newBindingState.mapIndex, newBindingState.controlStartIndex,
newBindingState.controlCount);
// For the remainder of what we do, we need binding indices to be stable.
if (isFullResolve)
continue;
ref var oldBindingState = ref memory.bindingStates[bindingIndex];
newBindingState.triggerEventIdForComposite = oldBindingState.triggerEventIdForComposite;
// If we only re-resolved controls and the action was in progress from the binding we're currently
// looking at and we still have the control that was driving the action, we can simply keep the
// action going from its previous state. However, control indices may have shifted (devices may have been added
// or removed) so we need to be careful to update those. Other indices (bindings, actions, maps, etc.)
// are guaranteed to still match.
ref var oldActionState = ref oldState.actionStates[actionIndex];
if (bindingIndex == oldActionState.bindingIndex && oldActionState.phase.IsInProgress() &&
activeControls.Count > 0 && activeControls[oldActionState.controlIndex] != null)
{
var control = activeControls[oldActionState.controlIndex];
// Find the new control index. Binding index is guaranteed to be the same,
// so we can simply look on the binding for where the control is now.
var newControlIndex = FindControlIndexOnBinding(bindingIndex, control);
Debug.Assert(newControlIndex != kInvalidIndex, "Could not find active control after binding resolution");
if (newControlIndex != kInvalidIndex)
{
newActionState.phase = oldActionState.phase;
newActionState.controlIndex = newControlIndex;
newActionState.magnitude = oldActionState.magnitude;
newActionState.interactionIndex = oldActionState.interactionIndex;
memory.controlMagnitudes[newControlIndex] = oldActionState.magnitude;
}
// Also bring over interaction states.
Debug.Assert(newBindingState.interactionCount == oldBindingState.interactionCount,
"Interaction count on binding must not have changed when doing a control-only resolve");
for (var n = 0; n < newBindingState.interactionCount; ++n)
{
ref var oldInteractionState = ref oldState.interactionStates[oldBindingState.interactionStartIndex + n];
if (!oldInteractionState.phase.IsInProgress())
continue;
control = activeControls[oldInteractionState.triggerControlIndex];
if (control == null)
continue;
newControlIndex = FindControlIndexOnBinding(bindingIndex, control);
Debug.Assert(newControlIndex != kInvalidIndex, "Could not find active control on interaction after binding resolution");
ref var newInteractionState = ref interactionStates[newBindingState.interactionStartIndex + n];
newInteractionState.phase = oldInteractionState.phase;
newInteractionState.performedTime = oldInteractionState.performedTime;
newInteractionState.startTime = oldInteractionState.startTime;
newInteractionState.triggerControlIndex = newControlIndex;
// If there was a running timeout on the interaction, resume it now.
if (oldInteractionState.isTimerRunning)
{
var trigger = new TriggerState
{
mapIndex = newBindingState.mapIndex,
controlIndex = newControlIndex,
bindingIndex = bindingIndex,
time = oldInteractionState.timerStartTime,
interactionIndex = newBindingState.interactionStartIndex + n
};
StartTimeout(oldInteractionState.timerDuration, ref trigger);
newInteractionState.totalTimeoutCompletionDone = oldInteractionState.totalTimeoutCompletionDone;
newInteractionState.totalTimeoutCompletionTimeRemaining = oldInteractionState.totalTimeoutCompletionTimeRemaining;
}
}
}
}
// Make sure we get an initial state check.
HookOnBeforeUpdate();
// Let listeners know we have changed controls.
NotifyListenersOfActionChange(InputActionChange.BoundControlsChanged);
// For a full resolve, we will have temporarily disabled actions and reenabled them now.
// Let listeners now.
if (isFullResolve && s_GlobalState.onActionChange.length > 0)
{
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
if (map.m_SingletonAction == null && map.m_EnabledActionsCount == map.m_Actions.LengthSafe())
{
NotifyListenersOfActionChange(InputActionChange.ActionMapEnabled, map);
}
else
{
var actions = map.actions;
foreach (var action in actions)
if (action.enabled)
NotifyListenersOfActionChange(InputActionChange.ActionEnabled, action);
}
}
}
}
// Return true if the action that bindingIndex is bound to is currently driven from the given control
// -OR- if any of the interactions on the binding are currently driven from the control.
private bool IsActiveControl(int bindingIndex, int controlIndex)
{
ref var bindingState = ref bindingStates[bindingIndex];
var actionIndex = bindingState.actionIndex;
if (actionIndex == kInvalidIndex)
return false;
if (actionStates[actionIndex].controlIndex == controlIndex)
return true;
for (var i = 0; i < bindingState.interactionCount; ++i)
if (interactionStates[bindingStates->interactionStartIndex + i].triggerControlIndex == controlIndex)
return true;
return false;
}
private int FindControlIndexOnBinding(int bindingIndex, InputControl control)
{
var controlStartIndex = bindingStates[bindingIndex].controlStartIndex;
var controlCount = bindingStates[bindingIndex].controlCount;
for (var n = 0; n < controlCount; ++n)
{
if (control == controls[controlStartIndex + n])
return controlStartIndex + n;
}
return kInvalidIndex;
}
private void ResetActionStatesDrivenBy(InputDevice device)
{
using (InputActionRebindingExtensions.DeferBindingResolution())
{
for (var actionIndex = 0; actionIndex < totalActionCount; ++actionIndex)
{
var actionState = &actionStates[actionIndex];
// Skip actions that aren't in progress.
if (actionState->phase == InputActionPhase.Waiting || actionState->phase == InputActionPhase.Disabled)
continue;
// Skip actions not driven from this device.
if (actionState->isPassThrough)
{
// Pass-through actions are not driven from specific controls yet still benefit
// from being able to observe resets. So for these, we need to check all bound controls,
// not just the one that happen to trigger last.
if (!IsActionBoundToControlFromDevice(device, actionIndex))
continue;
}
else
{
// For button and value actions, we go by whatever is currently driving the action.
var controlIndex = actionState->controlIndex;
if (controlIndex == -1)
continue;
var control = controls[controlIndex];
if (control.device != device)
continue;
}
// Reset.
ResetActionState(actionIndex);
}
}
}
private bool IsActionBoundToControlFromDevice(InputDevice device, int actionIndex)
{
var usesControlFromDevice = false;
var bindingStartIndex = GetActionBindingStartIndexAndCount(actionIndex, out var bindingCount);
for (var i = 0; i < bindingCount; ++i)
{
var bindingIndex = memory.actionBindingIndices[bindingStartIndex + i];
var controlCount = bindingStates[bindingIndex].controlCount;
var controlStartIndex = bindingStates[bindingIndex].controlStartIndex;
for (var n = 0; n < controlCount; ++n)
{
var control = controls[controlStartIndex + n];
if (control.device == device)
{
usesControlFromDevice = true;
break;
}
}
}
return usesControlFromDevice;
}
/// <summary>
/// Reset the trigger state of the given action such that the action has no record of being triggered.
/// </summary>
/// <param name="actionIndex">Action whose state to reset.</param>
/// <param name="toPhase">Phase to reset the action to. Must be either <see cref="InputActionPhase.Waiting"/>
/// or <see cref="InputActionPhase.Disabled"/>. Other phases cannot be transitioned to through resets.</param>
/// <param name="hardReset">If true, also wipe state such as for <see cref="InputAction.WasPressedThisFrame"/> which normally
/// persists even if an action is disabled.</param>
public void ResetActionState(int actionIndex, InputActionPhase toPhase = InputActionPhase.Waiting, bool hardReset = false)
{
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount, "Action index out of range when resetting action");
Debug.Assert(toPhase == InputActionPhase.Waiting || toPhase == InputActionPhase.Disabled,
"Phase must be Waiting or Disabled");
// If the action in started or performed phase, cancel it first.
var actionState = &actionStates[actionIndex];
if (actionState->phase != InputActionPhase.Waiting && actionState->phase != InputActionPhase.Disabled)
{
// Cancellation calls should receive current time.
actionState->time = InputState.currentTime;
// If the action got triggered from an interaction, go and reset all interactions on the binding
// that got triggered.
if (actionState->interactionIndex != kInvalidIndex)
{
var bindingIndex = actionState->bindingIndex;
if (bindingIndex != kInvalidIndex)
{
var mapIndex = actionState->mapIndex;
var interactionCount = bindingStates[bindingIndex].interactionCount;
var interactionStartIndex = bindingStates[bindingIndex].interactionStartIndex;
for (var i = 0; i < interactionCount; ++i)
{
var interactionIndex = interactionStartIndex + i;
ResetInteractionStateAndCancelIfNecessary(mapIndex, bindingIndex, interactionIndex);
}
}
}
else
{
// No interactions. Cancel the action directly.
Debug.Assert(actionState->bindingIndex != kInvalidIndex, "Binding index on trigger state is invalid");
Debug.Assert(bindingStates[actionState->bindingIndex].interactionCount == 0,
"Action has been triggered but apparently not from an interaction yet there's interactions on the binding that got triggered?!?");
if (actionState->phase != InputActionPhase.Canceled)
ChangePhaseOfAction(InputActionPhase.Canceled, ref actionStates[actionIndex]);
}
}
// Wipe state.
actionState->phase = toPhase;
actionState->controlIndex = kInvalidIndex;
actionState->bindingIndex = memory.actionBindingIndices[memory.actionBindingIndicesAndCounts[actionIndex]];
actionState->interactionIndex = kInvalidIndex;
actionState->startTime = 0;
actionState->time = 0;
actionState->hasMultipleConcurrentActuations = false;
actionState->inProcessing = false;
actionState->isPressed = false;
// For "hard resets", wipe state we don't normally wipe. This resets things such as WasPressedThisFrame().
if (hardReset)
{
actionState->lastCanceledInUpdate = default;
actionState->lastPerformedInUpdate = default;
actionState->pressedInUpdate = default;
actionState->releasedInUpdate = default;
}
Debug.Assert(!actionState->isStarted, "Cannot reset an action to started phase");
Debug.Assert(!actionState->isPerformed, "Cannot reset an action to performed phase");
Debug.Assert(!actionState->isCanceled, "Cannot reset an action to canceled phase");
}
public ref TriggerState FetchActionState(InputAction action)
{
Debug.Assert(action != null, "Action must not be null");
Debug.Assert(action.m_ActionMap != null, "Action must have an action map");
Debug.Assert(action.m_ActionMap.m_MapIndexInState != kInvalidIndex, "Action must have index set");
Debug.Assert(maps.Contains(action.m_ActionMap), "Action map must be contained in state");
Debug.Assert(action.m_ActionIndexInState >= 0 && action.m_ActionIndexInState < totalActionCount, "Action index is out of range");
return ref actionStates[action.m_ActionIndexInState];
}
public ActionMapIndices FetchMapIndices(InputActionMap map)
{
Debug.Assert(map != null, "Must must not be null");
Debug.Assert(maps.Contains(map), "Map must be contained in state");
return mapIndices[map.m_MapIndexInState];
}
public void EnableAllActions(InputActionMap map)
{
Debug.Assert(map != null, "Map must not be null");
Debug.Assert(map.m_Actions != null, "Map must have actions");
Debug.Assert(maps.Contains(map), "Map must be contained in state");
// Enable all controls in map that aren't already enabled.
EnableControls(map);
// Put all actions that aren't already enabled into waiting state.
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index on InputActionMap is out of range");
var actionCount = mapIndices[mapIndex].actionCount;
var actionStartIndex = mapIndices[mapIndex].actionStartIndex;
for (var i = 0; i < actionCount; ++i)
{
var actionIndex = actionStartIndex + i;
var actionState = &actionStates[actionIndex];
if (actionState->isDisabled)
actionState->phase = InputActionPhase.Waiting;
actionState->inProcessing = false;
}
map.m_EnabledActionsCount = actionCount;
HookOnBeforeUpdate();
// Make sure that if we happen to get here with one of the hidden action maps we create for singleton
// action, we notify on the action, not the hidden map.
if (map.m_SingletonAction != null)
NotifyListenersOfActionChange(InputActionChange.ActionEnabled, map.m_SingletonAction);
else
NotifyListenersOfActionChange(InputActionChange.ActionMapEnabled, map);
}
private void EnableControls(InputActionMap map)
{
Debug.Assert(map != null, "Map must not be null");
Debug.Assert(map.m_Actions != null, "Map must have actions");
Debug.Assert(maps.Contains(map), "Map must be contained in state");
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index on InputActionMap is out of range");
// Install state monitors for all controls.
var controlCount = mapIndices[mapIndex].controlCount;
var controlStartIndex = mapIndices[mapIndex].controlStartIndex;
if (controlCount > 0)
EnableControls(mapIndex, controlStartIndex, controlCount);
}
public void EnableSingleAction(InputAction action)
{
Debug.Assert(action != null, "Action must not be null");
Debug.Assert(action.m_ActionMap != null, "Action must have action map");
Debug.Assert(maps.Contains(action.m_ActionMap), "Action map must be contained in state");
EnableControls(action);
// Put action into waiting state.
var actionIndex = action.m_ActionIndexInState;
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when enabling single action");
actionStates[actionIndex].phase = InputActionPhase.Waiting;
++action.m_ActionMap.m_EnabledActionsCount;
HookOnBeforeUpdate();
NotifyListenersOfActionChange(InputActionChange.ActionEnabled, action);
}
private void EnableControls(InputAction action)
{
Debug.Assert(action != null, "Action must not be null");
Debug.Assert(action.m_ActionMap != null, "Action must have action map");
Debug.Assert(maps.Contains(action.m_ActionMap), "Map must be contained in state");
var actionIndex = action.m_ActionIndexInState;
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when enabling controls");
var map = action.m_ActionMap;
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index out of range in EnableControls");
// Go through all bindings in the map and for all that belong to the given action,
// enable the associated controls.
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
var bindingCount = mapIndices[mapIndex].bindingCount;
var bindingStatesPtr = memory.bindingStates;
for (var i = 0; i < bindingCount; ++i)
{
var bindingIndex = bindingStartIndex + i;
var bindingState = &bindingStatesPtr[bindingIndex];
if (bindingState->actionIndex != actionIndex)
continue;
// Composites enable en-bloc through the composite binding itself.
if (bindingState->isPartOfComposite)
continue;
var controlCount = bindingState->controlCount;
if (controlCount == 0)
continue;
EnableControls(mapIndex, bindingState->controlStartIndex, controlCount);
}
}
public void DisableAllActions(InputActionMap map)
{
Debug.Assert(map != null, "Map must not be null");
Debug.Assert(map.m_Actions != null, "Map must have actions");
Debug.Assert(maps.Contains(map), "Map must be contained in state");
DisableControls(map);
// Mark all actions as disabled.
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index out of range in DisableAllActions");
var actionStartIndex = mapIndices[mapIndex].actionStartIndex;
var actionCount = mapIndices[mapIndex].actionCount;
var allActionsEnabled = map.m_EnabledActionsCount == actionCount;
for (var i = 0; i < actionCount; ++i)
{
var actionIndex = actionStartIndex + i;
if (actionStates[actionIndex].phase != InputActionPhase.Disabled)
{
ResetActionState(actionIndex, toPhase: InputActionPhase.Disabled);
if (!allActionsEnabled)
NotifyListenersOfActionChange(InputActionChange.ActionDisabled, map.m_Actions[i]);
}
}
map.m_EnabledActionsCount = 0;
// Make sure that if we happen to get here with one of the hidden action maps we create for singleton
// action, we notify on the action, not the hidden map.
if (map.m_SingletonAction != null)
NotifyListenersOfActionChange(InputActionChange.ActionDisabled, map.m_SingletonAction);
else if (allActionsEnabled)
NotifyListenersOfActionChange(InputActionChange.ActionMapDisabled, map);
}
public void DisableControls(InputActionMap map)
{
Debug.Assert(map != null, "Map must not be null");
Debug.Assert(map.m_Actions != null, "Map must have actions");
Debug.Assert(maps.Contains(map), "Map must be contained in state");
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index out of range in DisableControls(InputActionMap)");
// Remove state monitors from all controls.
var controlCount = mapIndices[mapIndex].controlCount;
var controlStartIndex = mapIndices[mapIndex].controlStartIndex;
if (controlCount > 0)
DisableControls(mapIndex, controlStartIndex, controlCount);
}
public void DisableSingleAction(InputAction action)
{
Debug.Assert(action != null, "Action must not be null");
Debug.Assert(action.m_ActionMap != null, "Action must have action map");
Debug.Assert(maps.Contains(action.m_ActionMap), "Action map must be contained in state");
DisableControls(action);
ResetActionState(action.m_ActionIndexInState, toPhase: InputActionPhase.Disabled);
--action.m_ActionMap.m_EnabledActionsCount;
NotifyListenersOfActionChange(InputActionChange.ActionDisabled, action);
}
private void DisableControls(InputAction action)
{
Debug.Assert(action != null, "Action must not be null");
Debug.Assert(action.m_ActionMap != null, "Action must have action map");
Debug.Assert(maps.Contains(action.m_ActionMap), "Action map must be contained in state");
var actionIndex = action.m_ActionIndexInState;
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when disabling controls");
var map = action.m_ActionMap;
var mapIndex = map.m_MapIndexInState;
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index out of range in DisableControls(InputAction)");
// Go through all bindings in the map and for all that belong to the given action,
// disable the associated controls.
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
var bindingCount = mapIndices[mapIndex].bindingCount;
var bindingStatesPtr = memory.bindingStates;
for (var i = 0; i < bindingCount; ++i)
{
var bindingIndex = bindingStartIndex + i;
var bindingState = &bindingStatesPtr[bindingIndex];
if (bindingState->actionIndex != actionIndex)
continue;
// Composites enable en-bloc through the composite binding itself.
if (bindingState->isPartOfComposite)
continue;
var controlCount = bindingState->controlCount;
if (controlCount == 0)
continue;
DisableControls(mapIndex, bindingState->controlStartIndex, controlCount);
}
}
////REVIEW: can we have a method on InputManager doing this in bulk?
////NOTE: This must not enable only a partial set of controls on a binding (currently we have no setup that would lead to that)
private void EnableControls(int mapIndex, int controlStartIndex, int numControls)
{
Debug.Assert(controls != null, "State must have controls");
Debug.Assert(controlStartIndex >= 0 && (controlStartIndex < totalControlCount || numControls == 0),
"Control start index out of range");
Debug.Assert(controlStartIndex + numControls <= totalControlCount, "Control range out of bounds");
var manager = InputSystem.s_Manager;
for (var i = 0; i < numControls; ++i)
{
var controlIndex = controlStartIndex + i;
// We don't want to add multiple state monitors for the same control. This can happen if enabling
// single actions is mixed with enabling actions maps containing them.
if (IsControlEnabled(controlIndex))
continue;
var bindingIndex = controlIndexToBindingIndex[controlIndex];
var mapControlAndBindingIndex = ToCombinedMapAndControlAndBindingIndex(mapIndex, controlIndex, bindingIndex);
var bindingStatePtr = &bindingStates[bindingIndex];
if (bindingStatePtr->wantsInitialStateCheck)
SetInitialStateCheckPending(bindingStatePtr, true);
manager.AddStateChangeMonitor(controls[controlIndex], this, mapControlAndBindingIndex, controlGroupingAndComplexity[controlIndex * 2]);
SetControlEnabled(controlIndex, true);
}
}
private void DisableControls(int mapIndex, int controlStartIndex, int numControls)
{
Debug.Assert(controls != null, "State must have controls");
Debug.Assert(controlStartIndex >= 0 && (controlStartIndex < totalControlCount || numControls == 0),
"Control start index out of range");
Debug.Assert(controlStartIndex + numControls <= totalControlCount, "Control range out of bounds");
var manager = InputSystem.s_Manager;
for (var i = 0; i < numControls; ++i)
{
var controlIndex = controlStartIndex + i;
////TODO: This can be done much more efficiently by at least going byte by byte in the mask instead of just bit by bit
if (!IsControlEnabled(controlIndex))
continue;
var bindingIndex = controlIndexToBindingIndex[controlIndex];
var mapControlAndBindingIndex = ToCombinedMapAndControlAndBindingIndex(mapIndex, controlIndex, bindingIndex);
var bindingStatePtr = &bindingStates[bindingIndex];
if (bindingStatePtr->wantsInitialStateCheck)
SetInitialStateCheckPending(bindingStatePtr, false);
manager.RemoveStateChangeMonitor(controls[controlIndex], this, mapControlAndBindingIndex);
SetControlEnabled(controlIndex, false);
}
}
public void SetInitialStateCheckPending(int actionIndex, bool value = true)
{
var mapIndex = actionStates[actionIndex].mapIndex;
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
var bindingCount = mapIndices[mapIndex].bindingCount;
for (var i = 0; i < bindingCount; ++i)
{
ref var bindingState = ref bindingStates[bindingStartIndex + i];
if (bindingState.actionIndex == actionIndex && !bindingState.isPartOfComposite)
bindingState.initialStateCheckPending = value;
}
}
private void SetInitialStateCheckPending(BindingState* bindingStatePtr, bool value)
{
if (bindingStatePtr->isPartOfComposite)
{
// For composites, we always flag the composite itself as wanting an initial state check. This
// way, we don't have to worry about triggering the composite multiple times when several of its
// controls are actuated.
var compositeIndex = bindingStatePtr->compositeOrCompositeBindingIndex;
bindingStates[compositeIndex].initialStateCheckPending = value;
}
else
{
bindingStatePtr->initialStateCheckPending = value;
}
}
private bool IsControlEnabled(int controlIndex)
{
var intIndex = controlIndex / 32;
var mask = 1U << (controlIndex % 32);
return (enabledControls[intIndex] & mask) != 0;
}
private void SetControlEnabled(int controlIndex, bool state)
{
var intIndex = controlIndex / 32;
var mask = 1U << (controlIndex % 32);
if (state)
enabledControls[intIndex] |= mask;
else
enabledControls[intIndex] &= ~mask;
}
private void HookOnBeforeUpdate()
{
if (m_OnBeforeUpdateHooked)
return;
if (m_OnBeforeUpdateDelegate == null)
m_OnBeforeUpdateDelegate = OnBeforeInitialUpdate;
InputSystem.s_Manager.onBeforeUpdate += m_OnBeforeUpdateDelegate;
m_OnBeforeUpdateHooked = true;
}
private void UnhookOnBeforeUpdate()
{
if (!m_OnBeforeUpdateHooked)
return;
InputSystem.s_Manager.onBeforeUpdate -= m_OnBeforeUpdateDelegate;
m_OnBeforeUpdateHooked = false;
}
// We hook this into InputManager.onBeforeUpdate every time actions are enabled and then take it off
// the list after the first call. Inside here we check whether any actions we enabled already have
// non-default state on bound controls.
//
// NOTE: We do this as a callback from onBeforeUpdate rather than directly when the action is enabled
// to ensure that the callbacks happen during input processing and not randomly from wherever
// an action happens to be enabled.
private void OnBeforeInitialUpdate()
{
if (InputState.currentUpdateType == InputUpdateType.BeforeRender
#if UNITY_EDITOR
|| InputState.currentUpdateType == InputUpdateType.Editor
#endif
)
return;
// Remove us from the callback as the processing we're doing here is a one-time thing.
UnhookOnBeforeUpdate();
Profiler.BeginSample("InitialActionStateCheck");
// Use current time as time of control state change.
var time = InputState.currentTime;
////REVIEW: should we store this data in a separate place rather than go through all bindingStates?
// Go through all binding states and for every binding that needs an initial state check,
// go through all bound controls and for each one that isn't in its default state, pretend
// that the control just got actuated.
var manager = InputSystem.s_Manager;
for (var bindingIndex = 0; bindingIndex < totalBindingCount; ++bindingIndex)
{
ref var bindingState = ref bindingStates[bindingIndex];
if (!bindingState.initialStateCheckPending)
continue;
Debug.Assert(!bindingState.isPartOfComposite, "Initial state check flag must be set on composite, not on its parts");
bindingState.initialStateCheckPending = false;
var controlStartIndex = bindingState.controlStartIndex;
var controlCount = bindingState.controlCount;
var isComposite = bindingState.isComposite;
var didFindControlToSignal = false;
for (var n = 0; n < controlCount; ++n)
{
var controlIndex = controlStartIndex + n;
var control = controls[controlIndex];
// Leave any control alone that is already driving an interaction and/or action.
if (IsActiveControl(bindingIndex, controlIndex))
continue;
if (!control.CheckStateIsAtDefault())
{
// Update press times.
if (control.IsValueConsideredPressed(control.magnitude))
{
// ReSharper disable once CompareOfFloatsByEqualityOperator
if (bindingState.pressTime == default || bindingState.pressTime > time)
bindingState.pressTime = time;
}
// For composites, any one actuated control will lead to the composite being
// processed as a whole so we can stop here. This also ensures that we are
// not triggering the composite repeatedly if there are multiple actuated
// controls bound to its parts.
if (isComposite && didFindControlToSignal)
continue;
manager.SignalStateChangeMonitor(control, this);
didFindControlToSignal = true;
}
}
}
manager.FireStateChangeNotifications();
Profiler.EndSample();
}
// Called from InputManager when one of our state change monitors has fired.
// Tells us the time of the change *according to the state events coming in*.
// Also tells us which control of the controls we are binding to triggered the
// change and relays the binding index we gave it when we called AddChangeMonitor.
void IInputStateChangeMonitor.NotifyControlStateChanged(InputControl control, double time,
InputEventPtr eventPtr, long mapControlAndBindingIndex)
{
#if UNITY_EDITOR
if (InputState.currentUpdateType == InputUpdateType.Editor)
return;
#endif
SplitUpMapAndControlAndBindingIndex(mapControlAndBindingIndex, out var mapIndex, out var controlIndex, out var bindingIndex);
ProcessControlStateChange(mapIndex, controlIndex, bindingIndex, time, eventPtr);
}
void IInputStateChangeMonitor.NotifyTimerExpired(InputControl control, double time,
long mapControlAndBindingIndex, int interactionIndex)
{
SplitUpMapAndControlAndBindingIndex(mapControlAndBindingIndex, out var mapIndex, out var controlIndex, out var bindingIndex);
ProcessTimeout(time, mapIndex, controlIndex, bindingIndex, interactionIndex);
}
/// <summary>
/// Bit pack the mapIndex, controlIndex, bindingIndex and complexity components into a single long monitor index value.
/// </summary>
/// <param name="mapIndex">The mapIndex value to pack.</param>
/// <param name="controlIndex">The controlIndex value to pack.</param>
/// <param name="bindingIndex">The bindingIndex value to pack..</param>
/// <remarks>
/// We mangle the various indices we use into a single long for association with state change
/// monitors. While we could look up map and binding indices from control indices, keeping
/// all the information together avoids having to unnecessarily jump around in memory to grab
/// the various pieces of data.
/// The complexity component is implicitly derived and does not need to be passed as an argument.
/// </remarks>
private long ToCombinedMapAndControlAndBindingIndex(int mapIndex, int controlIndex, int bindingIndex)
{
// We have limits on the numbers of maps, controls, and bindings we allow in any single
// action state (see TriggerState.kMaxNumXXX).
var complexity = controlGroupingAndComplexity[controlIndex * 2 + 1];
var result = (long)controlIndex;
result |= (long)bindingIndex << 24;
result |= (long)mapIndex << 40;
result |= (long)complexity << 48;
return result;
}
/// <summary>
/// Extract the mapIndex, controlIndex and bindingIndex components from the provided bit packed argument (monitor index).
/// </summary>
/// <param name="mapControlAndBindingIndex">Represents a monitor index, which is a bit packed field containing multiple components.</param>
/// <param name="mapIndex">Will hold the extracted mapIndex value after the function completes.</param>
/// <param name="controlIndex">Will hold the extracted controlIndex value after the function completes.</param>
/// <param name="bindingIndex">Will hold the extracted bindingIndex value after the function completes.</param>
private void SplitUpMapAndControlAndBindingIndex(long mapControlAndBindingIndex, out int mapIndex,
out int controlIndex, out int bindingIndex)
{
controlIndex = (int)(mapControlAndBindingIndex & 0x00ffffff);
bindingIndex = (int)((mapControlAndBindingIndex >> 24) & 0xffff);
mapIndex = (int)((mapControlAndBindingIndex >> 40) & 0xff);
}
/// <summary>
/// Extract the 'complexity' component from the provided bit packed argument (monitor index).
/// </summary>
/// <param name="mapControlAndBindingIndex">Represents a monitor index, which is a bit packed field containing multiple components.</param>
internal static int GetComplexityFromMonitorIndex(long mapControlAndBindingIndex)
{
return (int)((mapControlAndBindingIndex >> 48) & 0xff);
}
/// <summary>
/// Process a state change that has happened in one of the controls attached
/// to this action map state.
/// </summary>
/// <param name="mapIndex">Index of the action map to which the binding belongs.</param>
/// <param name="controlIndex">Index of the control that changed state.</param>
/// <param name="bindingIndex">Index of the binding associated with the given control.</param>
/// <param name="time">The timestamp associated with the state change (comes from the state change event).</param>
/// <param name="eventPtr">Event (if any) that triggered the state change.</param>
/// <remarks>
/// This is where we end up if one of the state monitors we've put in the system has triggered.
/// From here we go back to the associated binding and then let it figure out what the state change
/// means for it.
///
/// Note that we get called for any change in state even if the change in state does not actually
/// result in a change of value on the respective control.
/// </remarks>
private void ProcessControlStateChange(int mapIndex, int controlIndex, int bindingIndex, double time, InputEventPtr eventPtr)
{
Debug.Assert(mapIndex >= 0 && mapIndex < totalMapCount, "Map index out of range in ProcessControlStateChange");
Debug.Assert(controlIndex >= 0 && controlIndex < totalControlCount, "Control index out of range");
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
using (InputActionRebindingExtensions.DeferBindingResolution())
{
// Callbacks can do pretty much anything and thus trigger arbitrary state/configuration
// changes in the system. We have to ensure that while we're executing callbacks, our
// current InputActionState is not getting changed from under us. We dictate that while
// m_InProcessControlStateChange is true, no binding resolution can be triggered on the state and
// it cannot be destroyed.
//
// This is also why we defer binding resolution above. If there is a configuration change
// triggered by an action callback, the state will be marked dirty and re-resolved after
// we have completed the callback.
m_InProcessControlStateChange = true;
m_CurrentlyProcessingThisEvent = eventPtr;
try
{
var bindingStatePtr = &bindingStates[bindingIndex];
var actionIndex = bindingStatePtr->actionIndex;
var trigger = new TriggerState
{
mapIndex = mapIndex,
controlIndex = controlIndex,
bindingIndex = bindingIndex,
interactionIndex = kInvalidIndex,
time = time,
startTime = time,
isPassThrough = actionIndex != kInvalidIndex && actionStates[actionIndex].isPassThrough,
isButton = actionIndex != kInvalidIndex && actionStates[actionIndex].isButton,
};
// If we have pending initial state checks that will run in the next update,
// force-reset the flag on the control that just triggered. This ensures that we're
// not triggering an action twice from the same state change in case the initial state
// check happens later (see Actions_ValueActionsEnabledInOnEvent_DoNotReactToCurrentStateOfControlTwice).
if (m_OnBeforeUpdateHooked)
bindingStatePtr->initialStateCheckPending = false;
// Store magnitude. We do this once and then only read it from here.
var control = controls[controlIndex];
trigger.magnitude = control.CheckStateIsAtDefault() ? 0f : control.magnitude;
controlMagnitudes[controlIndex] = trigger.magnitude;
// Update press times.
if (control.IsValueConsideredPressed(trigger.magnitude))
{
// ReSharper disable once CompareOfFloatsByEqualityOperator
if (bindingStatePtr->pressTime == default || bindingStatePtr->pressTime > trigger.time)
bindingStatePtr->pressTime = trigger.time;
}
// If the binding is part of a composite, check for interactions on the composite
// itself and give them a first shot at processing the value change.
var haveInteractionsOnComposite = false;
if (bindingStatePtr->isPartOfComposite)
{
var compositeBindingIndex = bindingStatePtr->compositeOrCompositeBindingIndex;
var compositeBindingPtr = &bindingStates[compositeBindingIndex];
// If the composite has already been triggered from the very same event, ignore it.
// Example: KeyboardState change that includes both A and W key state changes and we're looking
// at a WASD composite binding. There's a state change monitor on both the A and the W
// key and thus the manager will notify us individually of both changes. However, we
// want to perform the action only once.
if (ShouldIgnoreInputOnCompositeBinding(compositeBindingPtr, eventPtr))
return;
// Update magnitude for composite.
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeContext = new InputBindingCompositeContext
{
m_State = this,
m_BindingIndex = compositeBindingIndex
};
trigger.magnitude = composites[compositeIndex].EvaluateMagnitude(ref compositeContext);
memory.compositeMagnitudes[compositeIndex] = trigger.magnitude;
// Run through interactions on composite.
var interactionCountOnComposite = compositeBindingPtr->interactionCount;
if (interactionCountOnComposite > 0)
{
haveInteractionsOnComposite = true;
ProcessInteractions(ref trigger,
compositeBindingPtr->interactionStartIndex,
interactionCountOnComposite);
}
}
// Check if we have multiple concurrent actuations on the same action. This may lead us
// to ignore certain inputs (e.g. when we get an input of lesser magnitude while already having
// one of higher magnitude) or may even lead us to switch to processing a different binding
// (e.g. when an input of previously greater magnitude has now fallen below the level of another
// ongoing input with now higher magnitude).
var isConflictingInput = IsConflictingInput(ref trigger, actionIndex);
bindingStatePtr = &bindingStates[trigger.bindingIndex]; // IsConflictingInput may switch us to a different binding.
// Process button presses/releases.
if (!isConflictingInput)
ProcessButtonState(ref trigger, actionIndex, bindingStatePtr);
// If we have interactions, let them do all the processing. The presence of an interaction
// essentially bypasses the default phase progression logic of an action.
var interactionCount = bindingStatePtr->interactionCount;
if (interactionCount > 0 && !bindingStatePtr->isPartOfComposite)
{
ProcessInteractions(ref trigger, bindingStatePtr->interactionStartIndex, interactionCount);
}
else if (!haveInteractionsOnComposite && !isConflictingInput)
{
ProcessDefaultInteraction(ref trigger, actionIndex);
}
}
finally
{
m_InProcessControlStateChange = default;
m_CurrentlyProcessingThisEvent = default;
}
}
}
private void ProcessButtonState(ref TriggerState trigger, int actionIndex, BindingState* bindingStatePtr)
{
var control = controls[trigger.controlIndex];
var pressPoint = control.isButton
? ((ButtonControl)control).pressPointOrDefault
: ButtonControl.s_GlobalDefaultButtonPressPoint;
// NOTE: This method relies on conflict resolution happening *first*. Otherwise, we may inadvertently
// detect a "release" from a control that is not actually driving the action.
// Record release time on the binding.
// NOTE: Explicitly look up control magnitude here instead of using trigger.magnitude
// as for part bindings, the trigger will have the magnitude of the whole composite.
var controlActuation = controlMagnitudes[trigger.controlIndex];
if (controlActuation <= pressPoint * ButtonControl.s_GlobalDefaultButtonReleaseThreshold)
bindingStatePtr->pressTime = 0d;
var actuation = trigger.magnitude;
var actionState = &actionStates[actionIndex];
if (!actionState->isPressed && actuation >= pressPoint)
{
actionState->pressedInUpdate = InputUpdate.s_UpdateStepCount;
actionState->isPressed = true;
}
else if (actionState->isPressed)
{
var releasePoint = pressPoint * ButtonControl.s_GlobalDefaultButtonReleaseThreshold;
if (actuation <= releasePoint)
{
actionState->releasedInUpdate = InputUpdate.s_UpdateStepCount;
actionState->isPressed = false;
}
}
}
/// <summary>
/// Whether the given state change on a composite binding should be ignored.
/// </summary>
/// <param name="binding"></param>
/// <param name="eventPtr"></param>
/// <returns></returns>
/// <remarks>
/// Each state event may change the state of arbitrary many controls on a device and thus may trigger
/// several bindings at once that are part of the same composite binding. We still want to trigger the
/// composite binding only once for the event.
///
/// To do so, we store the ID of the event on the binding and ignore events if they have the same
/// ID as the one we've already recorded.
/// </remarks>
private static bool ShouldIgnoreInputOnCompositeBinding(BindingState* binding, InputEvent* eventPtr)
{
if (eventPtr == null)
return false;
var eventId = eventPtr->eventId;
if (eventId != 0 && binding->triggerEventIdForComposite == eventId)
return true;
binding->triggerEventIdForComposite = eventId;
return false;
}
/// <summary>
/// Whether the given control state should be ignored.
/// </summary>
/// <param name="trigger"></param>
/// <param name="actionIndex"></param>
/// <returns></returns>
/// <remarks>
/// If an action has multiple controls bound to it, control state changes on the action may conflict with each other.
/// If that happens, we resolve the conflict by always sticking to the most actuated control.
///
/// Pass-through actions (<see cref="InputAction.passThrough"/>) will always bypass conflict resolution and respond
/// to every value change.
///
/// Actions that are resolved to only a single control will early out of conflict resolution.
///
/// Actions that are bound to multiple controls but have only one control actuated will early out of conflict
/// resolution as well.
///
/// Note that conflict resolution here is entirely tied to magnitude. This ignores other qualities that the value
/// of a control may have. For example, one 2D vector may have a similar magnitude to another yet point in an
/// entirely different direction.
///
/// There are other conflict resolution mechanisms that could be used. For example, we could average the values
/// from all controls. However, it would not necessarily result in more useful conflict resolution and would
/// at the same time be much more expensive.
/// </remarks>
private bool IsConflictingInput(ref TriggerState trigger, int actionIndex)
{
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when checking for conflicting control input");
// The goal of this method is to provide conflict resolution but do so ONLY if it is
// really needed. In the vast majority of cases, this method should do almost nothing and
// simply return straight away.
// If conflict resolution is disabled on the action, early out. This is the case for pass-through
// actions and for actions that cannot get into an ambiguous state based on the controls they
// are bound to.
var actionState = &actionStates[actionIndex];
if (!actionState->mayNeedConflictResolution)
return false;
// Anything past here happens only for actions that may have conflicts.
// Anything below here we want to avoid executing whenever we can.
Debug.Assert(actionState->mayNeedConflictResolution);
Profiler.BeginSample("InputActionResolveConflict");
// We take a local copy of this value, so we can change it to use the starting control of composites
// for simpler conflict resolution (so composites always use the same value), but still report the actually
// actuated control to the user.
var triggerControlIndex = trigger.controlIndex;
if (bindingStates[trigger.bindingIndex].isPartOfComposite)
{
// For actions that need conflict resolution, we force TriggerState.controlIndex to the
// first control in a composite. Otherwise it becomes much harder to tell if the we have
// multiple concurrent actuations or not.
// Since composites always evaluate as a whole instead of as single controls, having
// triggerControlIndex differ from the state monitor that fired should be fine.
var compositeBindingIndex = bindingStates[trigger.bindingIndex].compositeOrCompositeBindingIndex;
triggerControlIndex = bindingStates[compositeBindingIndex].controlStartIndex;
Debug.Assert(triggerControlIndex >= 0 && triggerControlIndex < totalControlCount,
"Control start index on composite binding out of range");
}
// Determine which control to consider the one currently associated with the action.
// We do the same thing as for the triggered control and in the case of a composite,
// switch to the first control of the composite.
var actionStateControlIndex = actionState->controlIndex;
if (bindingStates[actionState->bindingIndex].isPartOfComposite)
{
var compositeBindingIndex = bindingStates[actionState->bindingIndex].compositeOrCompositeBindingIndex;
actionStateControlIndex = bindingStates[compositeBindingIndex].controlStartIndex;
}
// Never ignore state changes for actions that aren't currently driven by
// anything.
if (actionStateControlIndex == kInvalidIndex)
{
actionState->magnitude = trigger.magnitude;
Profiler.EndSample();
return false;
}
// Find out if we get triggered from the control that is actively driving the action.
var isControlCurrentlyDrivingTheAction = triggerControlIndex == actionStateControlIndex ||
controls[triggerControlIndex] == controls[actionStateControlIndex]; // Same control, different binding.
// If the control is actuated *more* than the current level of actuation we recorded for the
// action, we process the state change normally. If this isn't the control that is already
// driving the action, it will become the one now.
//
// NOTE: For composites, we're looking at the combined actuation of the entire binding here,
// not just at the actuation level of the individual control. ComputeMagnitude()
// automatically takes care of that for us.
if (trigger.magnitude > actionState->magnitude)
{
// If this is not the control that is currently driving the action, we know
// there are multiple controls that are concurrently actuated on the action.
// Remember that so that when the controls are released again, we can more
// efficiently determine whether we need to take multiple bound controls into
// account or not.
// NOTE: For composites, we have forced triggerControlIndex to the first control
// in the composite. See above.
if (trigger.magnitude > 0 && !isControlCurrentlyDrivingTheAction && actionState->magnitude > 0)
actionState->hasMultipleConcurrentActuations = true;
// Keep recorded magnitude in action state up to date.
actionState->magnitude = trigger.magnitude;
Profiler.EndSample();
return false;
}
// If the control is actuated *less* then the current level of actuation we
// recorded for the action *and* the control that changed is the one that is currently
// driving the action, we have to check whether there is another actuation
// that is now *higher* than what we're getting from the current control.
if (trigger.magnitude < actionState->magnitude)
{
// If we're not currently driving the action, it's simple. Doesn't matter that we lowered
// actuation as we didn't have the highest actuation anyway.
if (!isControlCurrentlyDrivingTheAction)
{
Profiler.EndSample();
////REVIEW: should we *count* actuations instead? (problem is that then we have to reliably determine when a control
//// first actuates; the current solution will occasionally run conflict resolution when it doesn't have to
//// but won't require the extra bookkeeping)
// Do NOT let this control state change affect the action.
if (trigger.magnitude > 0)
actionState->hasMultipleConcurrentActuations = true;
return true;
}
// If we don't have multiple controls that are currently actuated, it's simple.
if (!actionState->hasMultipleConcurrentActuations)
{
// Keep recorded magnitude in action state up to date.
actionState->magnitude = trigger.magnitude;
Profiler.EndSample();
return false;
}
////REVIEW: is there a simpler way we can do this???
// So, now we know we are actually looking at a potential conflict. Multiple
// controls bound to the action are actuated but we don't yet know whether
// any of them is actuated *more* than the control that had just changed value.
// Go through the bindings for the action and see what we've got.
var bindingStartIndex = GetActionBindingStartIndexAndCount(actionIndex, out var bindingCount);
var highestActuationLevel = trigger.magnitude;
var controlWithHighestActuation = kInvalidIndex;
var bindingWithHighestActuation = kInvalidIndex;
var numActuations = 0;
for (var i = 0; i < bindingCount; ++i)
{
var bindingIndex = memory.actionBindingIndices[bindingStartIndex + i];
var binding = &memory.bindingStates[bindingIndex];
if (binding->isComposite)
{
// Composite bindings result in a single actuation value regardless of how
// many controls are bound through the parts of the composite.
var firstControlIndex = binding->controlStartIndex;
var compositeIndex = binding->compositeOrCompositeBindingIndex;
Debug.Assert(compositeIndex >= 0 && compositeIndex < totalCompositeCount,
"Composite index out of range on composite");
var magnitude = memory.compositeMagnitudes[compositeIndex];
if (magnitude > 0)
++numActuations;
if (magnitude > highestActuationLevel)
{
Debug.Assert(firstControlIndex >= 0 && firstControlIndex < totalControlCount,
"Control start index out of range on composite");
controlWithHighestActuation = firstControlIndex;
bindingWithHighestActuation = controlIndexToBindingIndex[firstControlIndex];
highestActuationLevel = magnitude;
}
}
else if (!binding->isPartOfComposite)
{
// Check actuation of each control on the binding.
for (var n = 0; n < binding->controlCount; ++n)
{
var controlIndex = binding->controlStartIndex + n;
var magnitude = memory.controlMagnitudes[controlIndex];
if (magnitude > 0)
++numActuations;
if (magnitude > highestActuationLevel)
{
controlWithHighestActuation = controlIndex;
bindingWithHighestActuation = bindingIndex;
highestActuationLevel = magnitude;
}
}
}
}
// Update our record of whether there are multiple concurrent actuations.
if (numActuations <= 1)
actionState->hasMultipleConcurrentActuations = false;
// If we didn't find a control with a higher actuation level, then go and process
// the control value change.
if (controlWithHighestActuation != kInvalidIndex)
{
// We do have a control with a higher actuation level. Switch from our current
// control to processing the control with the now highest actuation level.
//
// NOTE: We are processing an artificial control state change here. Information
// such as the timestamp will not correspond to when the control actually
// changed value. However, if we skip processing this as a separate control
// change here, interactions may not behave properly as they would not be
// seeing that we just lowered the actuation level on the action.
trigger.controlIndex = controlWithHighestActuation;
trigger.bindingIndex = bindingWithHighestActuation;
trigger.magnitude = highestActuationLevel;
// If we're switching to a different binding, we may also have to switch to a
// different stack of interactions.
if (actionState->bindingIndex != bindingWithHighestActuation)
{
// If there's an interaction currently driving the action, reset it.
// NOTE: This will also cancel an ongoing timer. So, say we're currently 0.5 seconds into
// a 1 second "Hold" when the user shifts to a different control, then this code here
// will *cancel* the current "Hold" and restart from scratch.
if (actionState->interactionIndex != kInvalidIndex)
ResetInteractionState(actionState->interactionIndex);
// If there's an interaction in progress on the new binding, let
// it drive the action.
var bindingState = &bindingStates[bindingWithHighestActuation];
var interactionCount = bindingState->interactionCount;
var interactionStartIndex = bindingState->interactionStartIndex;
for (var i = 0; i < interactionCount; ++i)
{
if (!interactionStates[interactionStartIndex + i].phase.IsInProgress())
continue;
actionState->interactionIndex = interactionStartIndex + i;
trigger.interactionIndex = interactionStartIndex + i;
break;
}
}
// We're switching the action to a different control so regardless of whether
// the processing of the control state change results in a call to ChangePhaseOfAction,
// we need to record this or the disambiguation code may start ignoring valid input.
actionState->controlIndex = controlWithHighestActuation;
actionState->bindingIndex = bindingWithHighestActuation;
actionState->magnitude = highestActuationLevel;
Profiler.EndSample();
return false;
}
}
Profiler.EndSample();
// If we're not really effecting any change on the action, ignore the control state change.
// NOTE: We may be looking at a control here that points in a completely direction, for example, even
// though it has the same magnitude. However, we require a control to *increase* absolute actuation
// before we let it drive the action.
if (!isControlCurrentlyDrivingTheAction && Mathf.Approximately(trigger.magnitude, actionState->magnitude))
{
// If we do have an actuation on a control that isn't currently driving the action, flag the action has
// having multiple concurrent inputs ATM.
if (trigger.magnitude > 0)
actionState->hasMultipleConcurrentActuations = true;
return true;
}
return false;
}
private ushort GetActionBindingStartIndexAndCount(int actionIndex, out ushort bindingCount)
{
bindingCount = memory.actionBindingIndicesAndCounts[actionIndex * 2 + 1];
return memory.actionBindingIndicesAndCounts[actionIndex * 2];
}
/// <summary>
/// When there is no interaction on an action, this method perform the default interaction logic that we
/// run when a bound control changes value.
/// </summary>
/// <param name="trigger">Control trigger state.</param>
/// <param name="actionIndex"></param>
/// <remarks>
/// The default interaction does not have its own <see cref="InteractionState"/>. Whatever we do in here,
/// we store directly on the action state.
///
/// The default interaction is basically a sort of optimization where we don't require having an explicit
/// interaction object. Conceptually, it can be thought of, however, as putting this interaction on any
/// binding that doesn't have any other interaction on it.
/// </remarks>
private void ProcessDefaultInteraction(ref TriggerState trigger, int actionIndex)
{
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when processing default interaction");
var actionState = &actionStates[actionIndex];
switch (actionState->phase)
{
case InputActionPhase.Waiting:
{
// Pass-through actions we perform on every value change and then go back
// to waiting.
if (trigger.isPassThrough)
{
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Waiting);
break;
}
// Button actions need to cross the button-press threshold.
if (trigger.isButton)
{
var actuation = trigger.magnitude;
if (actuation > 0)
ChangePhaseOfAction(InputActionPhase.Started, ref trigger);
var threshold = controls[trigger.controlIndex] is ButtonControl button ? button.pressPointOrDefault : ButtonControl.s_GlobalDefaultButtonPressPoint;
if (actuation >= threshold)
{
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Performed);
}
}
else
{
// Value-type action.
// Ignore if the control has not crossed its actuation threshold.
if (IsActuated(ref trigger))
{
////REVIEW: Why is it we don't stay in performed but rather go back to started all the time?
// Go into started, then perform and then go back to started.
ChangePhaseOfAction(InputActionPhase.Started, ref trigger);
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Started);
}
}
break;
}
case InputActionPhase.Started:
{
if (actionState->isButton)
{
var actuation = trigger.magnitude;
var threshold = controls[trigger.controlIndex] is ButtonControl button ? button.pressPointOrDefault : ButtonControl.s_GlobalDefaultButtonPressPoint;
if (actuation >= threshold)
{
// Button crossed press threshold. Perform.
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Performed);
}
else if (Mathf.Approximately(actuation, 0))
{
// Button is no longer actuated. Never reached threshold to perform.
// Cancel.
ChangePhaseOfAction(InputActionPhase.Canceled, ref trigger);
}
}
else
{
if (!IsActuated(ref trigger))
{
// Control went back to below actuation threshold. Cancel interaction.
ChangePhaseOfAction(InputActionPhase.Canceled, ref trigger);
}
else
{
// Control changed value above magnitude threshold. Perform and remain started.
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Started);
}
}
break;
}
case InputActionPhase.Performed:
{
if (actionState->isButton)
{
var actuation = trigger.magnitude;
var pressPoint = controls[trigger.controlIndex] is ButtonControl button ? button.pressPointOrDefault : ButtonControl.s_GlobalDefaultButtonPressPoint;
if (Mathf.Approximately(0f, actuation))
{
ChangePhaseOfAction(InputActionPhase.Canceled, ref trigger);
}
else
{
var threshold = pressPoint * ButtonControl.s_GlobalDefaultButtonReleaseThreshold;
if (actuation <= threshold)
{
// Button released to below threshold but not fully released.
ChangePhaseOfAction(InputActionPhase.Started, ref trigger);
}
}
}
else if (actionState->isPassThrough)
{
////REVIEW: even for pass-through actions, shouldn't we cancel when seeing a default value?
ChangePhaseOfAction(InputActionPhase.Performed, ref trigger,
phaseAfterPerformedOrCanceled: InputActionPhase.Performed);
}
break;
}
default:
Debug.Assert(false, "Should not get here");
break;
}
}
private void ProcessInteractions(ref TriggerState trigger, int interactionStartIndex, int interactionCount)
{
var context = new InputInteractionContext
{
m_State = this,
m_TriggerState = trigger
};
for (var i = 0; i < interactionCount; ++i)
{
var index = interactionStartIndex + i;
var state = interactionStates[index];
var interaction = interactions[index];
context.m_TriggerState.phase = state.phase;
context.m_TriggerState.startTime = state.startTime;
context.m_TriggerState.interactionIndex = index;
interaction.Process(ref context);
}
}
private void ProcessTimeout(double time, int mapIndex, int controlIndex, int bindingIndex, int interactionIndex)
{
Debug.Assert(controlIndex >= 0 && controlIndex < totalControlCount, "Control index out of range");
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
Debug.Assert(interactionIndex >= 0 && interactionIndex < totalInteractionCount, "Interaction index out of range");
ref var currentState = ref interactionStates[interactionIndex];
var context = new InputInteractionContext
{
m_State = this,
m_TriggerState =
new TriggerState
{
phase = currentState.phase,
time = time,
mapIndex = mapIndex,
controlIndex = controlIndex,
bindingIndex = bindingIndex,
interactionIndex = interactionIndex,
startTime = currentState.startTime
},
timerHasExpired = true,
};
currentState.isTimerRunning = false;
currentState.totalTimeoutCompletionTimeRemaining =
Mathf.Max(currentState.totalTimeoutCompletionTimeRemaining - currentState.timerDuration, 0);
currentState.timerDuration = default;
// Let interaction handle timer expiration.
interactions[interactionIndex].Process(ref context);
}
internal void SetTotalTimeoutCompletionTime(float seconds, ref TriggerState trigger)
{
Debug.Assert(trigger.interactionIndex >= 0 && trigger.interactionIndex < totalInteractionCount, "Interaction index out of range");
ref var interactionState = ref interactionStates[trigger.interactionIndex];
interactionState.totalTimeoutCompletionDone = 0;
interactionState.totalTimeoutCompletionTimeRemaining = seconds;
}
internal void StartTimeout(float seconds, ref TriggerState trigger)
{
Debug.Assert(trigger.mapIndex >= 0 && trigger.mapIndex < totalMapCount, "Map index out of range");
Debug.Assert(trigger.controlIndex >= 0 && trigger.controlIndex < totalControlCount, "Control index out of range");
Debug.Assert(trigger.interactionIndex >= 0 && trigger.interactionIndex < totalInteractionCount, "Interaction index out of range");
var manager = InputSystem.s_Manager;
var currentTime = trigger.time;
var control = controls[trigger.controlIndex];
var interactionIndex = trigger.interactionIndex;
var monitorIndex =
ToCombinedMapAndControlAndBindingIndex(trigger.mapIndex, trigger.controlIndex, trigger.bindingIndex);
// If there's already a timeout running, cancel it first.
ref var interactionState = ref interactionStates[interactionIndex];
if (interactionState.isTimerRunning)
StopTimeout(interactionIndex);
// Add new timeout.
manager.AddStateChangeMonitorTimeout(control, this, currentTime + seconds, monitorIndex,
interactionIndex);
// Update state.
interactionState.isTimerRunning = true;
interactionState.timerStartTime = currentTime;
interactionState.timerDuration = seconds;
interactionState.timerMonitorIndex = monitorIndex;
}
private void StopTimeout(int interactionIndex)
{
Debug.Assert(interactionIndex >= 0 && interactionIndex < totalInteractionCount, "Interaction index out of range");
ref var interactionState = ref interactionStates[interactionIndex];
var manager = InputSystem.s_Manager;
manager.RemoveStateChangeMonitorTimeout(this, interactionState.timerMonitorIndex, interactionIndex);
// Update state.
interactionState.isTimerRunning = false;
interactionState.totalTimeoutCompletionDone += interactionState.timerDuration;
interactionState.totalTimeoutCompletionTimeRemaining =
Mathf.Max(interactionState.totalTimeoutCompletionTimeRemaining - interactionState.timerDuration, 0);
interactionState.timerDuration = default;
interactionState.timerStartTime = default;
interactionState.timerMonitorIndex = default;
}
/// <summary>
/// Perform a phase change on the given interaction. Only visible to observers
/// if it happens to change the phase of the action, too.
/// </summary>
/// <param name="newPhase">New phase to transition the interaction to.</param>
/// <param name="trigger">Information about the binding and control that triggered the phase change.</param>
/// <param name="phaseAfterPerformed">If <paramref name="newPhase"/> is <see cref="InputActionPhase.Performed"/>,
/// this determines which phase to transition to after the action has been performed. This would usually be
/// <see cref="InputActionPhase.Waiting"/> (default), <see cref="InputActionPhase.Started"/> (if the action is supposed
/// to be oscillate between started and performed), or <see cref="InputActionPhase.Performed"/> (if the action is
/// supposed to perform over and over again until canceled).</param>
/// <param name="processNextInteractionOnCancel">Indicates if the system should try and change the phase of other
/// interactions on the same action that are already started or performed after cancelling this interaction. This should be
/// false when resetting interactions.</param>
/// <remarks>
/// Multiple interactions on the same binding can be started concurrently but the
/// first interaction that starts will get to drive an action until it either cancels
/// or performs the action.
///
/// If an interaction driving an action performs it, all interactions will reset and
/// go back waiting.
///
/// If an interaction driving an action cancels it, the next interaction in the list which
/// has already started will get to drive the action (example: a TapInteraction and a
/// SlowTapInteraction both start and the TapInteraction gets to drive the action because
/// it comes first; then the TapInteraction cancels because the button is held for too
/// long and the SlowTapInteraction will get to drive the action next).
/// </remarks>
internal void ChangePhaseOfInteraction(InputActionPhase newPhase, ref TriggerState trigger,
InputActionPhase phaseAfterPerformed = InputActionPhase.Waiting, bool processNextInteractionOnCancel = true)
{
var interactionIndex = trigger.interactionIndex;
var bindingIndex = trigger.bindingIndex;
Debug.Assert(interactionIndex >= 0 && interactionIndex < totalInteractionCount, "Interaction index out of range");
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
////TODO: need to make sure that performed and canceled phase changes happen on the *same* binding&control
//// as the start of the phase
var phaseAfterPerformedOrCanceled = InputActionPhase.Waiting;
if (newPhase == InputActionPhase.Performed)
phaseAfterPerformedOrCanceled = phaseAfterPerformed;
// Any time an interaction changes phase, we cancel all pending timeouts.
ref var interactionState = ref interactionStates[interactionIndex];
if (interactionState.isTimerRunning)
StopTimeout(trigger.interactionIndex);
// Update interaction state.
interactionState.phase = newPhase;
interactionState.triggerControlIndex = trigger.controlIndex;
interactionState.startTime = trigger.startTime;
if (newPhase == InputActionPhase.Performed)
interactionState.performedTime = trigger.time;
// See if it affects the phase of an associated action.
var actionIndex = bindingStates[bindingIndex].actionIndex; // We already had to tap this array and entry in ProcessControlStateChange.
if (actionIndex != -1)
{
if (actionStates[actionIndex].phase == InputActionPhase.Waiting)
{
// We're the first interaction to go to the start phase.
if (!ChangePhaseOfAction(newPhase, ref trigger,
phaseAfterPerformedOrCanceled: phaseAfterPerformedOrCanceled))
return;
}
else if (newPhase == InputActionPhase.Canceled && actionStates[actionIndex].interactionIndex == trigger.interactionIndex)
{
// We're canceling but maybe there's another interaction ready
// to go into start phase. *Or* there's an interaction that has
// already performed.
if (!ChangePhaseOfAction(newPhase, ref trigger))
return;
if (processNextInteractionOnCancel == false)
return;
var interactionStartIndex = bindingStates[bindingIndex].interactionStartIndex;
var numInteractions = bindingStates[bindingIndex].interactionCount;
for (var i = 0; i < numInteractions; ++i)
{
var index = interactionStartIndex + i;
if (index != trigger.interactionIndex && (interactionStates[index].phase == InputActionPhase.Started ||
interactionStates[index].phase == InputActionPhase.Performed))
{
// Trigger start.
var startTime = interactionStates[index].startTime;
var triggerForInteraction = new TriggerState
{
phase = InputActionPhase.Started,
controlIndex = interactionStates[index].triggerControlIndex,
bindingIndex = trigger.bindingIndex,
interactionIndex = index,
mapIndex = trigger.mapIndex,
time = startTime,
startTime = startTime,
};
if (!ChangePhaseOfAction(InputActionPhase.Started, ref triggerForInteraction))
return;
// If the interaction has already performed, trigger it now.
if (interactionStates[index].phase == InputActionPhase.Performed)
{
triggerForInteraction = new TriggerState
{
phase = InputActionPhase.Performed,
controlIndex = interactionStates[index].triggerControlIndex,
bindingIndex = trigger.bindingIndex,
interactionIndex = index,
mapIndex = trigger.mapIndex,
time = interactionStates[index].performedTime, // Time when the interaction performed.
startTime = startTime,
};
if (!ChangePhaseOfAction(InputActionPhase.Performed, ref triggerForInteraction))
return;
}
break;
}
}
}
else if (actionStates[actionIndex].interactionIndex == trigger.interactionIndex)
{
// Any other phase change goes to action if we're the interaction driving
// the current phase.
if (!ChangePhaseOfAction(newPhase, ref trigger, phaseAfterPerformedOrCanceled))
return;
// We're the interaction driving the action and we performed the action,
// so reset any other interaction to waiting state.
if (newPhase == InputActionPhase.Performed)
{
var interactionStartIndex = bindingStates[bindingIndex].interactionStartIndex;
var numInteractions = bindingStates[bindingIndex].interactionCount;
for (var i = 0; i < numInteractions; ++i)
{
var index = interactionStartIndex + i;
if (index != trigger.interactionIndex)
ResetInteractionState(index);
}
}
}
}
// If the interaction performed or canceled, go back to waiting.
// Exception: if it was performed and we're to remain in started state, set the interaction
// to started. Note that for that phase transition, there are no callbacks being
// triggered (i.e. we don't call 'started' every time after 'performed').
if (newPhase == InputActionPhase.Performed && actionStates[actionIndex].interactionIndex != trigger.interactionIndex)
{
// We performed but we're not the interaction driving the action. We want to stay performed to make
// sure that if the interaction that is currently driving the action cancels, we get to perform
// the action. If we go back to waiting here, then the system can't tell that there's another interaction
// ready to perform (in fact, that has already performed).
}
else if (newPhase == InputActionPhase.Performed && phaseAfterPerformed != InputActionPhase.Waiting)
{
interactionState.phase = phaseAfterPerformed;
}
else if (newPhase == InputActionPhase.Performed || newPhase == InputActionPhase.Canceled)
{
ResetInteractionState(trigger.interactionIndex);
}
}
/// <summary>
/// Change the current phase of the action referenced by <paramref name="trigger"/> to <paramref name="newPhase"/>.
/// </summary>
/// <param name="newPhase">New phase to transition to.</param>
/// <param name="trigger">Trigger that caused the change in phase.</param>
/// <param name="phaseAfterPerformedOrCanceled"></param>
/// <remarks>
/// The change in phase is visible to observers, i.e. on the various callbacks and notifications.
///
/// If <paramref name="newPhase"/> is <see cref="InputActionPhase.Performed"/> or <see cref="InputActionPhase.Canceled"/>,
/// the action will subsequently immediately transition to <paramref name="phaseAfterPerformedOrCanceled"/>
/// (<see cref="InputActionPhase.Waiting"/> by default). This change is not visible to observers, i.e. there won't
/// be another run through callbacks.
/// </remarks>
private bool ChangePhaseOfAction(InputActionPhase newPhase, ref TriggerState trigger,
InputActionPhase phaseAfterPerformedOrCanceled = InputActionPhase.Waiting)
{
Debug.Assert(newPhase != InputActionPhase.Disabled, "Should not disable an action using this method");
Debug.Assert(trigger.mapIndex >= 0 && trigger.mapIndex < totalMapCount, "Map index out of range");
Debug.Assert(trigger.controlIndex >= 0 && trigger.controlIndex < totalControlCount, "Control index out of range");
Debug.Assert(trigger.bindingIndex >= 0 && trigger.bindingIndex < totalBindingCount, "Binding index out of range");
var actionIndex = bindingStates[trigger.bindingIndex].actionIndex;
if (actionIndex == kInvalidIndex)
return true; // No action associated with binding.
// Ignore if action is disabled.
var actionState = &actionStates[actionIndex];
if (actionState->isDisabled)
return true;
// We mark the action as in-processing while we execute its phase transitions and perform
// callbacks. The callbacks may alter system state such that the action may get disabled
// (and potentially re-enabled) while the callback is in progress. We need to make sure that
// if that happens, we don't go and then do more processing on the action.
actionState->inProcessing = true;
try
{
// Enforce transition constraints.
if (actionState->isPassThrough && trigger.interactionIndex == kInvalidIndex)
{
// No constraints on pass-through actions except if there are interactions driving the action.
ChangePhaseOfActionInternal(actionIndex, actionState, newPhase, ref trigger);
if (!actionState->inProcessing)
return false;
}
else if (newPhase == InputActionPhase.Performed && actionState->phase == InputActionPhase.Waiting)
{
// Going from waiting to performed, we make a detour via started.
ChangePhaseOfActionInternal(actionIndex, actionState, InputActionPhase.Started, ref trigger);
if (!actionState->inProcessing)
return false;
// Then we perform.
ChangePhaseOfActionInternal(actionIndex, actionState, newPhase, ref trigger);
if (!actionState->inProcessing)
return false;
// And finally, if we're going back to waiting, we make a detour via canceled.
if (phaseAfterPerformedOrCanceled == InputActionPhase.Waiting)
ChangePhaseOfActionInternal(actionIndex, actionState, InputActionPhase.Canceled, ref trigger);
if (!actionState->inProcessing)
return false;
actionState->phase = phaseAfterPerformedOrCanceled;
}
else if (actionState->phase != newPhase || newPhase == InputActionPhase.Performed) // We allow Performed to trigger repeatedly.
{
ChangePhaseOfActionInternal(actionIndex, actionState, newPhase, ref trigger);
if (!actionState->inProcessing)
return false;
if (newPhase == InputActionPhase.Performed || newPhase == InputActionPhase.Canceled)
actionState->phase = phaseAfterPerformedOrCanceled;
}
}
finally
{
actionState->inProcessing = false;
}
// If we're now waiting, reset control state. This is important for the disambiguation code
// to not consider whatever control actuation happened on the action last.
if (actionState->phase == InputActionPhase.Waiting)
{
actionState->controlIndex = kInvalidIndex;
actionState->flags &= ~TriggerState.Flags.HaveMagnitude;
}
return true;
}
private void ChangePhaseOfActionInternal(int actionIndex, TriggerState* actionState, InputActionPhase newPhase, ref TriggerState trigger)
{
Debug.Assert(trigger.mapIndex == actionState->mapIndex,
"Map index on trigger does not correspond to map index of trigger state");
// Update action state.
var newState = trigger;
// We need to make sure here that any HaveMagnitude flag we may be carrying over from actionState
// is handled correctly (case 1239551).
newState.flags = actionState->flags; // Preserve flags.
if (newPhase != InputActionPhase.Canceled)
newState.magnitude = trigger.magnitude;
else
newState.magnitude = 0;
newState.phase = newPhase;
if (newPhase == InputActionPhase.Performed)
{
newState.lastPerformedInUpdate = InputUpdate.s_UpdateStepCount;
newState.lastCanceledInUpdate = actionState->lastCanceledInUpdate;
// When we perform an action, we mark the event handled such that FireStateChangeNotifications()
// can then reset state monitors in the same group.
// NOTE: We don't consume for controls at binding complexity 1. Those we fire in unison.
if (controlGroupingAndComplexity[trigger.controlIndex * 2 + 1] > 1 &&
// we can end up switching to performed state from an interaction with a timeout, at which point
// the original event will probably have been removed from memory, so make sure to check
// we still have one
m_CurrentlyProcessingThisEvent.valid)
m_CurrentlyProcessingThisEvent.handled = true;
}
else if (newPhase == InputActionPhase.Canceled)
{
newState.lastCanceledInUpdate = InputUpdate.s_UpdateStepCount;
newState.lastPerformedInUpdate = actionState->lastPerformedInUpdate;
}
else
{
newState.lastPerformedInUpdate = actionState->lastPerformedInUpdate;
newState.lastCanceledInUpdate = actionState->lastCanceledInUpdate;
}
newState.pressedInUpdate = actionState->pressedInUpdate;
newState.releasedInUpdate = actionState->releasedInUpdate;
if (newPhase == InputActionPhase.Started)
newState.startTime = newState.time;
*actionState = newState;
// Let listeners know.
var map = maps[trigger.mapIndex];
Debug.Assert(actionIndex >= mapIndices[trigger.mapIndex].actionStartIndex,
"actionIndex is below actionStartIndex for map that the action belongs to");
var action = map.m_Actions[actionIndex - mapIndices[trigger.mapIndex].actionStartIndex];
trigger.phase = newPhase;
switch (newPhase)
{
case InputActionPhase.Started:
{
Debug.Assert(trigger.controlIndex != -1, "Must have control to start an action");
CallActionListeners(actionIndex, map, newPhase, ref action.m_OnStarted, "started");
break;
}
case InputActionPhase.Performed:
{
Debug.Assert(trigger.controlIndex != -1, "Must have control to perform an action");
CallActionListeners(actionIndex, map, newPhase, ref action.m_OnPerformed, "performed");
break;
}
case InputActionPhase.Canceled:
{
Debug.Assert(trigger.controlIndex != -1, "When canceling, must have control that started action");
CallActionListeners(actionIndex, map, newPhase, ref action.m_OnCanceled, "canceled");
break;
}
}
}
private void CallActionListeners(int actionIndex, InputActionMap actionMap, InputActionPhase phase, ref CallbackArray<InputActionListener> listeners, string callbackName)
{
// If there's no listeners, don't bother with anything else.
var callbacksOnMap = actionMap.m_ActionCallbacks;
if (listeners.length == 0 && callbacksOnMap.length == 0 && s_GlobalState.onActionChange.length == 0)
return;
var context = new InputAction.CallbackContext
{
m_State = this,
m_ActionIndex = actionIndex,
};
Profiler.BeginSample("InputActionCallback");
// Global callback goes first.
var action = context.action;
if (s_GlobalState.onActionChange.length > 0)
{
InputActionChange change;
switch (phase)
{
case InputActionPhase.Started:
change = InputActionChange.ActionStarted;
break;
case InputActionPhase.Performed:
change = InputActionChange.ActionPerformed;
break;
case InputActionPhase.Canceled:
change = InputActionChange.ActionCanceled;
break;
default:
Debug.Assert(false, "Should not reach here");
return;
}
DelegateHelpers.InvokeCallbacksSafe(ref s_GlobalState.onActionChange, action, change, "InputSystem.onActionChange");
}
// Run callbacks (if any) directly on action.
DelegateHelpers.InvokeCallbacksSafe(ref listeners, context, callbackName, action);
// Run callbacks (if any) on action map.
DelegateHelpers.InvokeCallbacksSafe(ref callbacksOnMap, context, callbackName, actionMap);
Profiler.EndSample();
}
private object GetActionOrNoneString(ref TriggerState trigger)
{
var action = GetActionOrNull(ref trigger);
if (action == null)
return "<none>";
return action;
}
internal InputAction GetActionOrNull(int bindingIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
var actionIndex = bindingStates[bindingIndex].actionIndex;
if (actionIndex == kInvalidIndex)
return null;
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount,
"Action index out of range when getting action");
var mapIndex = bindingStates[bindingIndex].mapIndex;
var actionStartIndex = mapIndices[mapIndex].actionStartIndex;
return maps[mapIndex].m_Actions[actionIndex - actionStartIndex];
}
internal InputAction GetActionOrNull(ref TriggerState trigger)
{
Debug.Assert(trigger.mapIndex >= 0 && trigger.mapIndex < totalMapCount, "Map index out of range");
Debug.Assert(trigger.bindingIndex >= 0 && trigger.bindingIndex < totalBindingCount, "Binding index out of range");
var actionIndex = bindingStates[trigger.bindingIndex].actionIndex;
if (actionIndex == kInvalidIndex)
return null;
Debug.Assert(actionIndex >= 0 && actionIndex < totalActionCount, "Action index out of range");
var actionStartIndex = mapIndices[trigger.mapIndex].actionStartIndex;
return maps[trigger.mapIndex].m_Actions[actionIndex - actionStartIndex];
}
internal InputControl GetControl(ref TriggerState trigger)
{
Debug.Assert(trigger.controlIndex != kInvalidIndex, "Control index is invalid");
Debug.Assert(trigger.controlIndex >= 0 && trigger.controlIndex < totalControlCount, "Control index out of range");
return controls[trigger.controlIndex];
}
private IInputInteraction GetInteractionOrNull(ref TriggerState trigger)
{
if (trigger.interactionIndex == kInvalidIndex)
return null;
Debug.Assert(trigger.interactionIndex >= 0 && trigger.interactionIndex < totalInteractionCount, "Interaction index out of range");
return interactions[trigger.interactionIndex];
}
internal int GetBindingIndexInMap(int bindingIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
var mapIndex = bindingStates[bindingIndex].mapIndex;
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
return bindingIndex - bindingStartIndex;
}
internal int GetBindingIndexInState(int mapIndex, int bindingIndexInMap)
{
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
return bindingStartIndex + bindingIndexInMap;
}
// Iterators may not use unsafe code so do the detour here.
internal ref BindingState GetBindingState(int bindingIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
return ref bindingStates[bindingIndex];
}
internal ref InputBinding GetBinding(int bindingIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
var mapIndex = bindingStates[bindingIndex].mapIndex;
var bindingStartIndex = mapIndices[mapIndex].bindingStartIndex;
return ref maps[mapIndex].m_Bindings[bindingIndex - bindingStartIndex];
}
internal InputActionMap GetActionMap(int bindingIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
var mapIndex = bindingStates[bindingIndex].mapIndex;
return maps[mapIndex];
}
private void ResetInteractionStateAndCancelIfNecessary(int mapIndex, int bindingIndex, int interactionIndex)
{
Debug.Assert(interactionIndex >= 0 && interactionIndex < totalInteractionCount, "Interaction index out of range");
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
// If interaction is currently driving an action and it has been started or performed,
// cancel it.
//
// NOTE: We could just blindly call ChangePhaseOfInteraction() and it would handle the case of
// when the interaction is currently driving the action automatically. However, doing so
// would give other interactions a chance to take over which is something we don't want to
// happen when resetting actions.
var actionIndex = bindingStates[bindingIndex].actionIndex;
if (actionStates[actionIndex].interactionIndex == interactionIndex)
{
switch (interactionStates[interactionIndex].phase)
{
case InputActionPhase.Started:
case InputActionPhase.Performed:
ChangePhaseOfInteraction(InputActionPhase.Canceled, ref actionStates[actionIndex], processNextInteractionOnCancel: false);
break;
}
actionStates[actionIndex].interactionIndex = kInvalidIndex;
}
ResetInteractionState(interactionIndex);
}
private void ResetInteractionState(int interactionIndex)
{
Debug.Assert(interactionIndex >= 0 && interactionIndex < totalInteractionCount, "Interaction index out of range");
// Clean up internal state that the interaction may keep.
interactions[interactionIndex].Reset();
// Clean up timer.
if (interactionStates[interactionIndex].isTimerRunning)
StopTimeout(interactionIndex);
// Reset state record.
interactionStates[interactionIndex] =
new InteractionState
{
// We never set interactions to disabled. This way we don't have to go through them
// when we disable/enable actions.
phase = InputActionPhase.Waiting,
triggerControlIndex = kInvalidIndex
};
}
internal int GetValueSizeInBytes(int bindingIndex, int controlIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
Debug.Assert(controlIndex >= 0 && controlIndex < totalControlCount, "Control index out of range");
if (bindingStates[bindingIndex].isPartOfComposite) ////TODO: instead, just have compositeOrCompositeBindingIndex be invalid
{
var compositeBindingIndex = bindingStates[bindingIndex].compositeOrCompositeBindingIndex;
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeObject = composites[compositeIndex];
Debug.Assert(compositeObject != null, "Composite object on composite state is null");
return compositeObject.valueSizeInBytes;
}
var control = controls[controlIndex];
Debug.Assert(control != null, "Control at given index is null");
return control.valueSizeInBytes;
}
internal Type GetValueType(int bindingIndex, int controlIndex)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
Debug.Assert(controlIndex >= 0 && controlIndex < totalControlCount, "Control index out of range");
if (bindingStates[bindingIndex].isPartOfComposite) ////TODO: instead, just have compositeOrCompositeBindingIndex be invalid
{
var compositeBindingIndex = bindingStates[bindingIndex].compositeOrCompositeBindingIndex;
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeObject = composites[compositeIndex];
Debug.Assert(compositeObject != null, "Composite object is null");
return compositeObject.valueType;
}
var control = controls[controlIndex];
Debug.Assert(control != null, "Control is null");
return control.valueType;
}
internal static bool IsActuated(ref TriggerState trigger, float threshold = 0)
{
var magnitude = trigger.magnitude;
if (magnitude < 0)
return true;
if (Mathf.Approximately(threshold, 0))
return magnitude > 0;
return magnitude >= threshold;
}
////REVIEW: we can unify the reading paths once we have blittable type constraints
internal void ReadValue(int bindingIndex, int controlIndex, void* buffer, int bufferSize, bool ignoreComposites = false)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index out of range");
Debug.Assert(controlIndex >= 0 && controlIndex < totalControlCount, "Control index out of range");
InputControl control = null;
// If the binding that triggered the action is part of a composite, let
// the composite determine the value we return.
if (!ignoreComposites && bindingStates[bindingIndex].isPartOfComposite)
{
var compositeBindingIndex = bindingStates[bindingIndex].compositeOrCompositeBindingIndex;
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeObject = composites[compositeIndex];
Debug.Assert(compositeObject != null, "Composite object is null");
var context = new InputBindingCompositeContext
{
m_State = this,
m_BindingIndex = compositeBindingIndex
};
compositeObject.ReadValue(ref context, buffer, bufferSize);
// Switch bindingIndex to that of composite so that we use the right processors.
bindingIndex = compositeBindingIndex;
}
else
{
control = controls[controlIndex];
Debug.Assert(control != null, "Control is null");
control.ReadValueIntoBuffer(buffer, bufferSize);
}
// Run value through processors, if any.
var processorCount = bindingStates[bindingIndex].processorCount;
if (processorCount > 0)
{
var processorStartIndex = bindingStates[bindingIndex].processorStartIndex;
for (var i = 0; i < processorCount; ++i)
processors[processorStartIndex + i].Process(buffer, bufferSize, control);
}
}
internal TValue ReadValue<TValue>(int bindingIndex, int controlIndex, bool ignoreComposites = false)
where TValue : struct
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
var value = default(TValue);
// In the case of a composite, this will be null.
InputControl<TValue> controlOfType = null;
// If the binding that triggered the action is part of a composite, let
// the composite determine the value we return.
if (!ignoreComposites && bindingStates[bindingIndex].isPartOfComposite)
{
var compositeBindingIndex = bindingStates[bindingIndex].compositeOrCompositeBindingIndex;
Debug.Assert(compositeBindingIndex >= 0 && compositeBindingIndex < totalBindingCount, "Composite binding index is out of range");
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeObject = composites[compositeIndex];
Debug.Assert(compositeObject != null, "Composite object is null");
var context = new InputBindingCompositeContext
{
m_State = this,
m_BindingIndex = compositeBindingIndex
};
var compositeOfType = compositeObject as InputBindingComposite<TValue>;
if (compositeOfType == null)
{
// Composite is not derived from InputBindingComposite<TValue>. Do an explicit value
// type check here. Might be a composite like OneModifierComposite that dynamically
// determines its value type based on what its parts are bound to.
var valueType = compositeObject.valueType;
if (!valueType.IsAssignableFrom(typeof(TValue)))
throw new InvalidOperationException(
$"Cannot read value of type '{typeof(TValue).Name}' from composite '{compositeObject}' bound to action '{GetActionOrNull(bindingIndex)}' (composite is a '{compositeIndex.GetType().Name}' with value type '{TypeHelpers.GetNiceTypeName(valueType)}')");
compositeObject.ReadValue(ref context, UnsafeUtility.AddressOf(ref value), UnsafeUtility.SizeOf<TValue>());
}
else
{
value = compositeOfType.ReadValue(ref context);
}
// Switch bindingIndex to that of composite so that we use the right processors.
bindingIndex = compositeBindingIndex;
}
else
{
if (controlIndex != kInvalidIndex)
{
var control = controls[controlIndex];
Debug.Assert(control != null, "Control is null");
controlOfType = control as InputControl<TValue>;
if (controlOfType == null)
throw new InvalidOperationException(
$"Cannot read value of type '{TypeHelpers.GetNiceTypeName(typeof(TValue))}' from control '{control.path}' bound to action '{GetActionOrNull(bindingIndex)}' (control is a '{control.GetType().Name}' with value type '{TypeHelpers.GetNiceTypeName(control.valueType)}')");
value = controlOfType.value;
}
}
// Run value through processors, if any.
return ApplyProcessors(bindingIndex, value, controlOfType);
}
internal TValue ApplyProcessors<TValue>(int bindingIndex, TValue value, InputControl<TValue> controlOfType = null)
where TValue : struct
{
var processorCount = bindingStates[bindingIndex].processorCount;
if (processorCount > 0)
{
var processorStartIndex = bindingStates[bindingIndex].processorStartIndex;
for (var i = 0; i < processorCount; ++i)
{
if (processors[processorStartIndex + i] is InputProcessor<TValue> processor)
value = processor.Process(value, controlOfType);
}
}
return value;
}
public float EvaluateCompositePartMagnitude(int bindingIndex, int partNumber)
{
var firstChildBindingIndex = bindingIndex + 1;
var currentMagnitude = float.MinValue;
for (var index = firstChildBindingIndex; index < totalBindingCount && bindingStates[index].isPartOfComposite; ++index)
{
if (bindingStates[index].partIndex != partNumber)
continue;
var controlCount = bindingStates[index].controlCount;
var controlStartIndex = bindingStates[index].controlStartIndex;
for (var i = 0; i < controlCount; ++i)
{
var control = controls[controlStartIndex + i];
// NOTE: We do *NOT* go to controlMagnitudes here. The reason is we may not yet have received the ProcessControlStateChange
// call for a specific control that is part of the composite and thus controlMagnitudes may not yet have been updated
// for a specific control.
currentMagnitude = Mathf.Max(control.magnitude, currentMagnitude);
}
}
return currentMagnitude;
}
internal double GetCompositePartPressTime(int bindingIndex, int partNumber)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
Debug.Assert(bindingStates[bindingIndex].isComposite, "Binding must be a composite");
var firstChildBindingIndex = bindingIndex + 1;
var pressTime = double.MaxValue;
for (var index = firstChildBindingIndex; index < totalBindingCount && bindingStates[index].isPartOfComposite; ++index)
{
ref var bindingState = ref bindingStates[index];
if (bindingState.partIndex != partNumber)
continue;
// ReSharper disable once CompareOfFloatsByEqualityOperator
if (bindingState.pressTime != default && bindingState.pressTime < pressTime)
pressTime = bindingState.pressTime;
}
// ReSharper disable once CompareOfFloatsByEqualityOperator
if (pressTime == double.MaxValue)
return -1d;
return pressTime;
}
/// <summary>
/// Read the value of the given part of a composite binding.
/// </summary>
/// <param name="bindingIndex">Index of the composite binding in <see cref="bindingStates"/>.</param>
/// <param name="partNumber">Index of the part. Note that part indices start at 1!</param>
/// <typeparam name="TValue">Value type to read. Must correspond to the value of bound controls or an exception will
/// be thrown.</typeparam>
/// <returns>Greatest value from among the bound controls for the given part.</returns>
/// <remarks>
/// Composites are composed of "parts". Each part has an associated name (e.g. "negative" or "positive") which is
/// referenced by <see cref="InputBinding.name"/> of bindings that are part of the composite. However, multiple
/// bindings may reference the same part (e.g. there could be a binding for "W" and another binding for "UpArrow"
/// and both would reference the "Up" part).
///
/// However, a given composite will only be interested in a single value for any given part. What we do is give
/// a composite an integer key for every part. When it asks for a value for the given part, we go through all
/// bindings that reference the given part and return the greatest value from among the controls of all those
/// bindings.
///
/// <example>
/// <code>
/// // Read a float value from the second part of the composite binding at index 3.
/// ReadCompositePartValue&lt;float&gt;(3, 2);
/// </code>
/// </example>
/// </remarks>
internal TValue ReadCompositePartValue<TValue, TComparer>(int bindingIndex, int partNumber,
bool* buttonValuePtr, out int controlIndex, TComparer comparer = default)
where TValue : struct
where TComparer : IComparer<TValue>
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
Debug.Assert(bindingStates[bindingIndex].isComposite, "Binding must be a composite");
var result = default(TValue);
var firstChildBindingIndex = bindingIndex + 1;
var isFirstValue = true;
controlIndex = kInvalidIndex;
// Find the binding in the composite that has both the given part number and
// the greatest value.
//
// NOTE: It is tempting to go by control magnitudes instead as those are readily available to us (controlMagnitudes)
// and avoids us reading values that we're not going to use. Unfortunately, we can't do that as several controls
// used by a composite may all have been updated with a single event (e.g. WASD on a keyboard will usually see
// just one update that refreshes the entire state of the keyboard). In that case, one of the controls will
// see its state monitor trigger first and in turn trigger processing of the action and composite. Thus only
// that one single control would have its value refreshed in controlMagnitudes whereas the other control magnitudes
// would be stale.
for (var index = firstChildBindingIndex; index < totalBindingCount && bindingStates[index].isPartOfComposite; ++index)
{
if (bindingStates[index].partIndex != partNumber)
continue;
var controlCount = bindingStates[index].controlCount;
var controlStartIndex = bindingStates[index].controlStartIndex;
for (var i = 0; i < controlCount; ++i)
{
var thisControlIndex = controlStartIndex + i;
var value = ReadValue<TValue>(index, thisControlIndex, ignoreComposites: true);
if (isFirstValue)
{
result = value;
controlIndex = thisControlIndex;
isFirstValue = false;
}
else if (comparer.Compare(value, result) > 0)
{
result = value;
controlIndex = thisControlIndex;
}
if (buttonValuePtr != null && controlIndex == thisControlIndex)
{
var control = controls[thisControlIndex];
if (control is ButtonControl button)
{
*buttonValuePtr = button.isPressed;
}
else if (control is InputControl<float>)
{
var valuePtr = UnsafeUtility.AddressOf(ref value);
*buttonValuePtr = *(float*)valuePtr >= ButtonControl.s_GlobalDefaultButtonPressPoint;
}
////REVIEW: Early out here as soon as *any* button is pressed? Technically, the comparer
//// could still select a different control, though...
}
}
}
return result;
}
internal bool ReadCompositePartValue(int bindingIndex, int partNumber, void* buffer, int bufferSize)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
Debug.Assert(bindingStates[bindingIndex].isComposite, "Binding must be a composite");
var firstChildBindingIndex = bindingIndex + 1;
// Find the binding in the composite that has both the given part number and
// the greatest amount of actuation.
var currentMagnitude = float.MinValue;
for (var index = firstChildBindingIndex; index < totalBindingCount && bindingStates[index].isPartOfComposite; ++index)
{
if (bindingStates[index].partIndex != partNumber)
continue;
var controlCount = bindingStates[index].controlCount;
var controlStartIndex = bindingStates[index].controlStartIndex;
for (var i = 0; i < controlCount; ++i)
{
var thisControlIndex = controlStartIndex + i;
// Check if the control has greater actuation than the most actuated control
// we've found so far.
//
// NOTE: We cannot rely on controlMagnitudes here as several controls used by a composite may all have been updated
// with a single event (e.g. WASD on a keyboard will usually see just one update that refreshes the entire state
// of the keyboard). In that case, one of the controls will see its state monitor trigger first and in turn
// trigger processing of the action and composite. Thus only that one single control would have its value
// refreshed in controlMagnitudes whereas the other control magnitudes would be stale.
var control = controls[thisControlIndex];
var magnitude = control.magnitude;
if (magnitude < currentMagnitude)
continue;
// If so, read the value.
ReadValue(index, thisControlIndex, buffer, bufferSize, ignoreComposites: true);
currentMagnitude = magnitude;
}
}
return currentMagnitude > float.MinValue;
}
internal object ReadCompositePartValueAsObject(int bindingIndex, int partNumber)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
Debug.Assert(bindingStates[bindingIndex].isComposite, "Binding must be a composite");
var firstChildBindingIndex = bindingIndex + 1;
// Find the binding in the composite that both has the given part number and
// the greatest amount of actuation.
var currentMagnitude = float.MinValue;
object currentValue = null;
for (var index = firstChildBindingIndex; index < totalBindingCount && bindingStates[index].isPartOfComposite; ++index)
{
if (bindingStates[index].partIndex != partNumber)
continue;
var controlCount = bindingStates[index].controlCount;
var controlStartIndex = bindingStates[index].controlStartIndex;
for (var i = 0; i < controlCount; ++i)
{
var thisControlIndex = controlStartIndex + i;
// Check if the control has greater actuation than the most actuated control
// we've found so far.
//
// NOTE: We cannot rely on controlMagnitudes here as several controls used by a composite may all have been updated
// with a single event (e.g. WASD on a keyboard will usually see just one update that refreshes the entire state
// of the keyboard). In that case, one of the controls will see its state monitor trigger first and in turn
// trigger processing of the action and composite. Thus only that one single control would have its value
// refreshed in controlMagnitudes whereas the other control magnitudes would be stale.
var control = controls[thisControlIndex];
var magnitude = control.magnitude;
if (magnitude < currentMagnitude)
continue;
// If so, read the value.
currentValue = ReadValueAsObject(index, thisControlIndex, ignoreComposites: true);
currentMagnitude = magnitude;
}
}
return currentValue;
}
internal object ReadValueAsObject(int bindingIndex, int controlIndex, bool ignoreComposites = false)
{
Debug.Assert(bindingIndex >= 0 && bindingIndex < totalBindingCount, "Binding index is out of range");
InputControl control = null;
object value = null;
// If the binding that triggered the action is part of a composite, let
// the composite determine the value we return.
if (!ignoreComposites && bindingStates[bindingIndex].isPartOfComposite) ////TODO: instead, just have compositeOrCompositeBindingIndex be invalid
{
var compositeBindingIndex = bindingStates[bindingIndex].compositeOrCompositeBindingIndex;
Debug.Assert(compositeBindingIndex >= 0 && compositeBindingIndex < totalBindingCount, "Binding index is out of range");
var compositeIndex = bindingStates[compositeBindingIndex].compositeOrCompositeBindingIndex;
var compositeObject = composites[compositeIndex];
Debug.Assert(compositeObject != null, "Composite object is null");
var context = new InputBindingCompositeContext
{
m_State = this,
m_BindingIndex = compositeBindingIndex
};
value = compositeObject.ReadValueAsObject(ref context);
// Switch bindingIndex to that of composite so that we use the right processors.
bindingIndex = compositeBindingIndex;
}
else
{
if (controlIndex != kInvalidIndex)
{
control = controls[controlIndex];
Debug.Assert(control != null, "Control is null");
value = control.ReadValueAsObject();
}
}
if (value != null)
{
// Run value through processors, if any.
var processorCount = bindingStates[bindingIndex].processorCount;
if (processorCount > 0)
{
var processorStartIndex = bindingStates[bindingIndex].processorStartIndex;
for (var i = 0; i < processorCount; ++i)
value = processors[processorStartIndex + i].ProcessAsObject(value, control);
}
}
return value;
}
internal bool ReadValueAsButton(int bindingIndex, int controlIndex)
{
var buttonControl = default(ButtonControl);
if (!bindingStates[bindingIndex].isPartOfComposite)
buttonControl = controls[controlIndex] as ButtonControl;
// Read float value.
var floatValue = ReadValue<float>(bindingIndex, controlIndex);
// Compare to press point.
if (buttonControl != null)
return floatValue >= buttonControl.pressPointOrDefault;
return floatValue >= ButtonControl.s_GlobalDefaultButtonPressPoint;
}
/// <summary>
/// Records the current state of a single interaction attached to a binding.
/// Each interaction keeps track of its own trigger control and phase progression.
/// </summary>
[StructLayout(LayoutKind.Explicit, Size = 48)]
internal struct InteractionState
{
[FieldOffset(0)] private ushort m_TriggerControlIndex;
[FieldOffset(2)] private byte m_Phase;
[FieldOffset(3)] private byte m_Flags;
[FieldOffset(4)] private float m_TimerDuration;
[FieldOffset(8)] private double m_StartTime;
[FieldOffset(16)] private double m_TimerStartTime;
[FieldOffset(24)] private double m_PerformedTime;
[FieldOffset(32)] private float m_TotalTimeoutCompletionTimeDone;
[FieldOffset(36)] private float m_TotalTimeoutCompletionTimeRemaining;
[FieldOffset(40)] private long m_TimerMonitorIndex;
public int triggerControlIndex
{
get
{
if (m_TriggerControlIndex == ushort.MaxValue)
return kInvalidIndex;
return m_TriggerControlIndex;
}
set
{
if (value == kInvalidIndex)
m_TriggerControlIndex = ushort.MaxValue;
else
{
if (value < 0 || value >= ushort.MaxValue)
throw new NotSupportedException("More than ushort.MaxValue-1 controls in a single InputActionState");
m_TriggerControlIndex = (ushort)value;
}
}
}
public double startTime
{
get => m_StartTime;
set => m_StartTime = value;
}
public double performedTime
{
get => m_PerformedTime;
set => m_PerformedTime = value;
}
public double timerStartTime
{
get => m_TimerStartTime;
set => m_TimerStartTime = value;
}
public float timerDuration
{
get => m_TimerDuration;
set => m_TimerDuration = value;
}
public float totalTimeoutCompletionDone
{
get => m_TotalTimeoutCompletionTimeDone;
set => m_TotalTimeoutCompletionTimeDone = value;
}
public float totalTimeoutCompletionTimeRemaining
{
get => m_TotalTimeoutCompletionTimeRemaining;
set => m_TotalTimeoutCompletionTimeRemaining = value;
}
public long timerMonitorIndex
{
get => m_TimerMonitorIndex;
set => m_TimerMonitorIndex = value;
}
public bool isTimerRunning
{
get => ((Flags)m_Flags & Flags.TimerRunning) == Flags.TimerRunning;
set
{
if (value)
m_Flags |= (byte)Flags.TimerRunning;
else
{
var mask = ~Flags.TimerRunning;
m_Flags &= (byte)mask;
}
}
}
public InputActionPhase phase
{
get => (InputActionPhase)m_Phase;
set => m_Phase = (byte)value;
}
[Flags]
private enum Flags
{
TimerRunning = 1 << 0,
}
}
/// <summary>
/// Runtime state for a single binding.
/// </summary>
/// <remarks>
/// Correlated to the <see cref="InputBinding"/> it corresponds to by the index in the binding
/// array.
/// </remarks>
[StructLayout(LayoutKind.Explicit, Size = 32)]
internal struct BindingState
{
[FieldOffset(0)] private byte m_ControlCount;
[FieldOffset(1)] private byte m_InteractionCount;
[FieldOffset(2)] private byte m_ProcessorCount;
[FieldOffset(3)] private byte m_MapIndex;
[FieldOffset(4)] private byte m_Flags;
[FieldOffset(5)] private byte m_PartIndex;
[FieldOffset(6)] private ushort m_ActionIndex;
[FieldOffset(8)] private ushort m_CompositeOrCompositeBindingIndex;
[FieldOffset(10)] private ushort m_ProcessorStartIndex;
[FieldOffset(12)] private ushort m_InteractionStartIndex;
[FieldOffset(14)] private ushort m_ControlStartIndex;
[FieldOffset(16)] private double m_PressTime;
[FieldOffset(24)] private int m_TriggerEventIdForComposite;
[FieldOffset(28)] private int __padding; // m_PressTime double must be aligned
[Flags]
public enum Flags
{
ChainsWithNext = 1 << 0,
EndOfChain = 1 << 1,
Composite = 1 << 2,
PartOfComposite = 1 << 3,
InitialStateCheckPending = 1 << 4,
WantsInitialStateCheck = 1 << 5,
}
/// <summary>
/// Index into <see cref="controls"/> of first control associated with the binding.
/// </summary>
/// <remarks>
/// For composites, this is the index of the first control that is bound by any of the parts in the composite.
/// </remarks>
public int controlStartIndex
{
get => m_ControlStartIndex;
set
{
Debug.Assert(value != kInvalidIndex, "Control state index is invalid");
if (value >= ushort.MaxValue)
throw new NotSupportedException("Total control count in state cannot exceed byte.MaxValue=" + ushort.MaxValue);
m_ControlStartIndex = (ushort)value;
}
}
/// <summary>
/// Number of controls associated with this binding.
/// </summary>
/// <remarks>
/// For composites, this is the total number of controls bound by all parts of the composite combined.
/// </remarks>
public int controlCount
{
get => m_ControlCount;
set
{
if (value >= byte.MaxValue)
throw new NotSupportedException("Control count per binding cannot exceed byte.MaxValue=" + byte.MaxValue);
m_ControlCount = (byte)value;
}
}
/// <summary>
/// Index into <see cref="InputActionState.interactionStates"/> of first interaction associated with the binding.
/// </summary>
public int interactionStartIndex
{
get
{
if (m_InteractionStartIndex == ushort.MaxValue)
return kInvalidIndex;
return m_InteractionStartIndex;
}
set
{
if (value == kInvalidIndex)
m_InteractionStartIndex = ushort.MaxValue;
else
{
if (value >= ushort.MaxValue)
throw new NotSupportedException("Interaction count cannot exceed ushort.MaxValue=" + ushort.MaxValue);
m_InteractionStartIndex = (ushort)value;
}
}
}
/// <summary>
/// Number of interactions associated with this binding.
/// </summary>
public int interactionCount
{
get => m_InteractionCount;
set
{
if (value >= byte.MaxValue)
throw new NotSupportedException("Interaction count per binding cannot exceed byte.MaxValue=" + byte.MaxValue);
m_InteractionCount = (byte)value;
}
}
public int processorStartIndex
{
get
{
if (m_ProcessorStartIndex == ushort.MaxValue)
return kInvalidIndex;
return m_ProcessorStartIndex;
}
set
{
if (value == kInvalidIndex)
m_ProcessorStartIndex = ushort.MaxValue;
else
{
if (value >= ushort.MaxValue)
throw new NotSupportedException("Processor count cannot exceed ushort.MaxValue=" + ushort.MaxValue);
m_ProcessorStartIndex = (ushort)value;
}
}
}
public int processorCount
{
get => m_ProcessorCount;
set
{
if (value >= byte.MaxValue)
throw new NotSupportedException("Processor count per binding cannot exceed byte.MaxValue=" + byte.MaxValue);
m_ProcessorCount = (byte)value;
}
}
/// <summary>
/// Index of the action being triggered by the binding (if any).
/// </summary>
/// <remarks>
/// For bindings that don't trigger actions, this is <see cref="kInvalidIndex"/>.
///
/// For bindings that are part of a composite, we force this to be the action set on the composite itself.
/// </remarks>
public int actionIndex
{
get
{
if (m_ActionIndex == ushort.MaxValue)
return kInvalidIndex;
return m_ActionIndex;
}
set
{
if (value == kInvalidIndex)
m_ActionIndex = ushort.MaxValue;
else
{
if (value >= ushort.MaxValue)
throw new NotSupportedException("Action count cannot exceed ushort.MaxValue=" + ushort.MaxValue);
m_ActionIndex = (ushort)value;
}
}
}
public int mapIndex
{
get => m_MapIndex;
set
{
Debug.Assert(value != kInvalidIndex, "Map index is invalid");
if (value >= byte.MaxValue)
throw new NotSupportedException("Map count cannot exceed byte.MaxValue=" + byte.MaxValue);
m_MapIndex = (byte)value;
}
}
/// <summary>
/// If this is a composite binding, this is the index of the composite in <see cref="composites"/>.
/// If the binding is part of a composite, this is the index of the binding that is the composite.
/// If the binding is neither a composite nor part of a composite, this is <see cref="kInvalidIndex"/>.
/// </summary>
public int compositeOrCompositeBindingIndex
{
get
{
if (m_CompositeOrCompositeBindingIndex == ushort.MaxValue)
return kInvalidIndex;
return m_CompositeOrCompositeBindingIndex;
}
set
{
if (value == kInvalidIndex)
m_CompositeOrCompositeBindingIndex = ushort.MaxValue;
else
{
if (value >= ushort.MaxValue)
throw new NotSupportedException("Composite count cannot exceed ushort.MaxValue=" + ushort.MaxValue);
m_CompositeOrCompositeBindingIndex = (ushort)value;
}
}
}
/// <summary>
/// <see cref="InputEvent.eventId">ID</see> of the event that last triggered the binding.
/// </summary>
/// <remarks>
/// We only store this for composites ATM.
/// </remarks>
public int triggerEventIdForComposite
{
get => m_TriggerEventIdForComposite;
set => m_TriggerEventIdForComposite = value;
}
// For now, we only record this for part bindings!
public double pressTime
{
get => m_PressTime;
set => m_PressTime = value;
}
public Flags flags
{
get => (Flags)m_Flags;
set => m_Flags = (byte)value;
}
public bool chainsWithNext
{
get => (flags & Flags.ChainsWithNext) == Flags.ChainsWithNext;
set
{
if (value)
flags |= Flags.ChainsWithNext;
else
flags &= ~Flags.ChainsWithNext;
}
}
public bool isEndOfChain
{
get => (flags & Flags.EndOfChain) == Flags.EndOfChain;
set
{
if (value)
flags |= Flags.EndOfChain;
else
flags &= ~Flags.EndOfChain;
}
}
public bool isPartOfChain => chainsWithNext || isEndOfChain;
public bool isComposite
{
get => (flags & Flags.Composite) == Flags.Composite;
set
{
if (value)
flags |= Flags.Composite;
else
flags &= ~Flags.Composite;
}
}
public bool isPartOfComposite
{
get => (flags & Flags.PartOfComposite) == Flags.PartOfComposite;
set
{
if (value)
flags |= Flags.PartOfComposite;
else
flags &= ~Flags.PartOfComposite;
}
}
public bool initialStateCheckPending
{
get => (flags & Flags.InitialStateCheckPending) != 0;
set
{
if (value)
flags |= Flags.InitialStateCheckPending;
else
flags &= ~Flags.InitialStateCheckPending;
}
}
public bool wantsInitialStateCheck
{
get => (flags & Flags.WantsInitialStateCheck) != 0;
set
{
if (value)
flags |= Flags.WantsInitialStateCheck;
else
flags &= ~Flags.WantsInitialStateCheck;
}
}
public int partIndex
{
get => m_PartIndex;
set
{
if (partIndex < 0)
throw new ArgumentOutOfRangeException(nameof(value), "Part index must not be negative");
if (partIndex > byte.MaxValue)
throw new InvalidOperationException("Part count must not exceed byte.MaxValue=" + byte.MaxValue);
m_PartIndex = (byte)value;
}
}
}
/// <summary>
/// Record of an input control change and its related data.
/// </summary>
/// <remarks>
/// This serves a dual purpose. One is, trigger states represent control actuations while we process them. The
/// other is to represent the current actuation state of an action as a whole. The latter is stored in <see cref="actionStates"/>
/// while the former is passed around as temporary instances on the stack.
/// </remarks>
[StructLayout(LayoutKind.Explicit, Size = 48)]
public struct TriggerState
{
public const int kMaxNumMaps = byte.MaxValue;
public const int kMaxNumControls = ushort.MaxValue;
public const int kMaxNumBindings = ushort.MaxValue;
[FieldOffset(0)] private byte m_Phase;
[FieldOffset(1)] private byte m_Flags;
[FieldOffset(2)] private byte m_MapIndex;
// One byte available here.
[FieldOffset(4)] private ushort m_ControlIndex;
// Two bytes available here.
////REVIEW: can we condense these to floats? would save us a whopping 8 bytes
[FieldOffset(8)] private double m_Time;
[FieldOffset(16)] private double m_StartTime;
[FieldOffset(24)] private ushort m_BindingIndex;
[FieldOffset(26)] private ushort m_InteractionIndex;
[FieldOffset(28)] private float m_Magnitude;
[FieldOffset(32)] private uint m_LastPerformedInUpdate;
[FieldOffset(36)] private uint m_LastCanceledInUpdate;
[FieldOffset(40)] private uint m_PressedInUpdate;
[FieldOffset(44)] private uint m_ReleasedInUpdate;
/// <summary>
/// Phase being triggered by the control value change.
/// </summary>
public InputActionPhase phase
{
get => (InputActionPhase)m_Phase;
set => m_Phase = (byte)value;
}
public bool isDisabled => phase == InputActionPhase.Disabled;
public bool isWaiting => phase == InputActionPhase.Waiting;
public bool isStarted => phase == InputActionPhase.Started;
public bool isPerformed => phase == InputActionPhase.Performed;
public bool isCanceled => phase == InputActionPhase.Canceled;
/// <summary>
/// The time the binding got triggered.
/// </summary>
public double time
{
get => m_Time;
set => m_Time = value;
}
/// <summary>
/// The time when the binding moved into <see cref="InputActionPhase.Started"/>.
/// </summary>
public double startTime
{
get => m_StartTime;
set => m_StartTime = value;
}
/// <summary>
/// Amount of actuation on the control.
/// </summary>
/// <remarks>
/// This is only valid if <see cref="haveMagnitude"/> is true.
///
/// Note that this may differ from the actuation stored for <see cref="controlIndex"/> in <see
/// cref="UnmanagedMemory.controlMagnitudes"/> if the binding is a composite.
/// </remarks>
public float magnitude
{
get => m_Magnitude;
set
{
flags |= Flags.HaveMagnitude;
m_Magnitude = value;
}
}
/// <summary>
/// Whether <see cref="magnitude"/> has been set.
/// </summary>
/// <remarks>
/// Magnitude computation is expensive so we only want to do it once. Also, we sometimes need to compare
/// a current magnitude to a magnitude value from a previous frame and the magnitude of the control
/// may have already changed.
/// </remarks>
public bool haveMagnitude => (flags & Flags.HaveMagnitude) != 0;
/// <summary>
/// Index of the action map in <see cref="maps"/> that contains the binding that triggered.
/// </summary>
public int mapIndex
{
get => m_MapIndex;
set
{
if (value < 0 || value > kMaxNumMaps)
throw new NotSupportedException("More than byte.MaxValue InputActionMaps in a single InputActionState");
m_MapIndex = (byte)value;
}
}
/// <summary>
/// Index of the control currently driving the action or <see cref="kInvalidIndex"/> if none.
/// </summary>
public int controlIndex
{
get
{
if (m_ControlIndex == kMaxNumControls)
return kInvalidIndex;
return m_ControlIndex;
}
set
{
if (value == kInvalidIndex)
m_ControlIndex = ushort.MaxValue;
else
{
if (value < 0 || value >= kMaxNumControls)
throw new NotSupportedException("More than ushort.MaxValue-1 controls in a single InputActionState");
m_ControlIndex = (ushort)value;
}
}
}
/// <summary>
/// Index into <see cref="bindingStates"/> for the binding that triggered.
/// </summary>
/// <remarks>
/// This corresponds 1:1 to an <see cref="InputBinding"/>.
/// </remarks>
public int bindingIndex
{
get => m_BindingIndex;
set
{
if (value < 0 || value > kMaxNumBindings)
throw new NotSupportedException("More than ushort.MaxValue bindings in a single InputActionState");
m_BindingIndex = (ushort)value;
}
}
/// <summary>
/// Index into <see cref="InputActionState.interactionStates"/> for the interaction that triggered.
/// </summary>
/// <remarks>
/// Is <see cref="InputActionState.kInvalidIndex"/> if there is no interaction present on the binding.
/// </remarks>
public int interactionIndex
{
get
{
if (m_InteractionIndex == ushort.MaxValue)
return kInvalidIndex;
return m_InteractionIndex;
}
set
{
if (value == kInvalidIndex)
m_InteractionIndex = ushort.MaxValue;
else
{
if (value < 0 || value >= ushort.MaxValue)
throw new NotSupportedException("More than ushort.MaxValue-1 interactions in a single InputActionState");
m_InteractionIndex = (ushort)value;
}
}
}
/// <summary>
/// Update step count (<see cref="InputUpdate.s_UpdateStepCount"/>) in which action triggered/performed last.
/// Zero if the action did not trigger yet. Also reset to zero when the action is disabled.
/// </summary>
public uint lastPerformedInUpdate
{
get => m_LastPerformedInUpdate;
set => m_LastPerformedInUpdate = value;
}
public uint lastCanceledInUpdate
{
get => m_LastCanceledInUpdate;
set => m_LastCanceledInUpdate = value;
}
public uint pressedInUpdate
{
get => m_PressedInUpdate;
set => m_PressedInUpdate = value;
}
public uint releasedInUpdate
{
get => m_ReleasedInUpdate;
set => m_ReleasedInUpdate = value;
}
/// <summary>
/// Whether the action associated with the trigger state is marked as pass-through.
/// </summary>
/// <seealso cref="InputActionType.PassThrough"/>
public bool isPassThrough
{
get => (flags & Flags.PassThrough) != 0;
set
{
if (value)
flags |= Flags.PassThrough;
else
flags &= ~Flags.PassThrough;
}
}
/// <summary>
/// Whether the action associated with the trigger state is a button-type action.
/// </summary>
/// <seealso cref="InputActionType.Button"/>
public bool isButton
{
get => (flags & Flags.Button) != 0;
set
{
if (value)
flags |= Flags.Button;
else
flags &= ~Flags.Button;
}
}
public bool isPressed
{
get => (flags & Flags.Pressed) != 0;
set
{
if (value)
flags |= Flags.Pressed;
else
flags &= ~Flags.Pressed;
}
}
/// <summary>
/// Whether the action may potentially see multiple concurrent actuations from its bindings
/// and wants them resolved automatically.
/// </summary>
/// <remarks>
/// We use this to gate some of the more expensive checks that are pointless to
/// perform if we don't have to disambiguate input from concurrent sources.
///
/// Always disabled if <see cref="isPassThrough"/> is true.
/// </remarks>
public bool mayNeedConflictResolution
{
get => (flags & Flags.MayNeedConflictResolution) != 0;
set
{
if (value)
flags |= Flags.MayNeedConflictResolution;
else
flags &= ~Flags.MayNeedConflictResolution;
}
}
/// <summary>
/// Whether the action currently has several concurrent actuations from its bindings.
/// </summary>
/// <remarks>
/// This is only used when automatic conflict resolution is enabled (<see cref="mayNeedConflictResolution"/>).
/// </remarks>
public bool hasMultipleConcurrentActuations
{
get => (flags & Flags.HasMultipleConcurrentActuations) != 0;
set
{
if (value)
flags |= Flags.HasMultipleConcurrentActuations;
else
flags &= ~Flags.HasMultipleConcurrentActuations;
}
}
public bool inProcessing
{
get => (flags & Flags.InProcessing) != 0;
set
{
if (value)
flags |= Flags.InProcessing;
else
flags &= ~Flags.InProcessing;
}
}
public Flags flags
{
get => (Flags)m_Flags;
set => m_Flags = (byte)value;
}
[Flags]
public enum Flags
{
/// <summary>
/// Whether <see cref="magnitude"/> has been set.
/// </summary>
HaveMagnitude = 1 << 0,
/// <summary>
/// Whether the action associated with the trigger state is marked as pass-through.
/// </summary>
/// <seealso cref="InputActionType.PassThrough"/>
PassThrough = 1 << 1,
/// <summary>
/// Whether the action has more than one control bound to it.
/// </summary>
/// <remarks>
/// An action may have arbitrary many bindings yet may still resolve only to a single control
/// at runtime. In that case, this flag is NOT set. We only set it if binding resolution for
/// an action indeed ended up with multiple controls able to trigger the same action.
/// </remarks>
MayNeedConflictResolution = 1 << 2,
/// <summary>
/// Whether there are currently multiple bound controls that are actuated.
/// </summary>
/// <remarks>
/// This is only used if <see cref="TriggerState.mayNeedConflictResolution"/> is true.
/// </remarks>
HasMultipleConcurrentActuations = 1 << 3,
InProcessing = 1 << 4,
/// <summary>
/// Whether the action associated with the trigger state is a button-type action.
/// </summary>
/// <seealso cref="InputActionType.Button"/>
Button = 1 << 5,
Pressed = 1 << 6,
}
}
/// <summary>
/// Tells us where the data for a single action map is found in the
/// various arrays.
/// </summary>
public struct ActionMapIndices
{
public int actionStartIndex;
public int actionCount;
public int controlStartIndex;
public int controlCount;
public int bindingStartIndex;
public int bindingCount;
public int interactionStartIndex;
public int interactionCount;
public int processorStartIndex;
public int processorCount;
public int compositeStartIndex;
public int compositeCount;
}
/// <summary>
/// Unmanaged memory kept for action maps.
/// </summary>
/// <remarks>
/// Most of the dynamic execution state for actions we keep in a single block of unmanaged memory.
/// Essentially, only the C# heap objects (like IInputInteraction and such) we keep in managed arrays.
/// Aside from being able to condense the data into a single block of memory and not having to have
/// it spread out on the GC heap, we gain the advantage of being able to freely allocate and re-allocate
/// these blocks without creating garbage on the GC heap.
///
/// The data here is set up by <see cref="InputBindingResolver"/>.
/// </remarks>
public struct UnmanagedMemory : IDisposable
{
public bool isAllocated => basePtr != null;
public void* basePtr;
/// <summary>
/// Number of action maps and entries in <see cref="mapIndices"/> and <see cref="maps"/>.
/// </summary>
public int mapCount;
/// <summary>
/// Total number of actions (i.e. from all maps combined) and entries in <see cref="actionStates"/>.
/// </summary>
public int actionCount;
/// <summary>
/// Total number of interactions and entries in <see cref="interactionStates"/> and <see cref="interactions"/>.
/// </summary>
public int interactionCount;
/// <summary>
/// Total number of bindings and entries in <see cref="bindingStates"/>.
/// </summary>
public int bindingCount;
/// <summary>
/// Total number of bound controls and entries in <see cref="controls"/>.
/// </summary>
public int controlCount;
/// <summary>
/// Total number of composite bindings and entries in <see cref="composites"/>.
/// </summary>
public int compositeCount;
/// <summary>
/// Total size of allocated unmanaged memory.
/// </summary>
public int sizeInBytes =>
mapCount * sizeof(ActionMapIndices) + // mapIndices
actionCount * sizeof(TriggerState) + // actionStates
bindingCount * sizeof(BindingState) + // bindingStates
interactionCount * sizeof(InteractionState) + // interactionStates
controlCount * sizeof(float) + // controlMagnitudes
compositeCount * sizeof(float) + // compositeMagnitudes
controlCount * sizeof(int) + // controlIndexToBindingIndex
controlCount * sizeof(ushort) * 2 + // controlGrouping
actionCount * sizeof(ushort) * 2 + // actionBindingIndicesAndCounts
bindingCount * sizeof(ushort) + // actionBindingIndices
(controlCount + 31) / 32 * sizeof(int); // enabledControlsArray
/// <summary>
/// Trigger state of all actions added to the state.
/// </summary>
/// <remarks>
/// This array also tells which actions are enabled or disabled. Any action with phase
/// <see cref="InputActionPhase.Disabled"/> is disabled.
/// </remarks>
public TriggerState* actionStates;
/// <summary>
/// State of all bindings added to the state.
/// </summary>
/// <remarks>
/// For the most part, this is read-only information set up during resolution.
/// </remarks>
public BindingState* bindingStates;
/// <summary>
/// State of all interactions on bindings in the action map.
/// </summary>
/// <remarks>
/// Any interaction mentioned on any of the bindings gets its own execution state record
/// in here. The interactions for any one binding are grouped together.
/// </remarks>
public InteractionState* interactionStates;
/// <summary>
/// Current remembered level of actuation of each of the controls in <see cref="controls"/>.
/// </summary>
/// <remarks>
/// This array is NOT kept strictly up to date. In fact, we only use it for conflict resolution
/// between multiple bound controls at the moment. Meaning that in the majority of cases, the magnitude
/// stored for a control here will NOT be up to date.
///
/// Also note that for controls that are part of composites, this will NOT be the magnitude of the
/// control but rather be the magnitude of the entire compound.
/// </remarks>
public float* controlMagnitudes;
public float* compositeMagnitudes;
public int* enabledControls;
/// <summary>
/// Array of pair of ints, one pair for each action (same index as <see cref="actionStates"/>). First int
/// is the index into <see cref="actionBindingIndices"/> where bindings of action are found and second int
/// is the count of bindings on action.
/// </summary>
public ushort* actionBindingIndicesAndCounts;
/// <summary>
/// Array of indices into <see cref="bindingStates"/>. The indices for every action are laid out sequentially.
/// The array slice corresponding to each action can be determined by looking it up in <see cref="actionBindingIndicesAndCounts"/>.
/// </summary>
public ushort* actionBindingIndices;
////REVIEW: make this an array of shorts rather than ints?
public int* controlIndexToBindingIndex;
// Two shorts per control. First one is group number. Second one is complexity count.
public ushort* controlGroupingAndComplexity;
public bool controlGroupingInitialized;
public ActionMapIndices* mapIndices;
public void Allocate(int mapCount, int actionCount, int bindingCount, int controlCount, int interactionCount, int compositeCount)
{
Debug.Assert(basePtr == null, "Memory already allocated! Free first!");
Debug.Assert(mapCount >= 1, "Map count out of range");
Debug.Assert(actionCount >= 0, "Action count out of range");
Debug.Assert(bindingCount >= 0, "Binding count out of range");
Debug.Assert(interactionCount >= 0, "Interaction count out of range");
Debug.Assert(compositeCount >= 0, "Composite count out of range");
this.mapCount = mapCount;
this.actionCount = actionCount;
this.interactionCount = interactionCount;
this.bindingCount = bindingCount;
this.controlCount = controlCount;
this.compositeCount = compositeCount;
var numBytes = sizeInBytes;
var ptr = (byte*)UnsafeUtility.Malloc(numBytes, 8, Allocator.Persistent);
UnsafeUtility.MemClear(ptr, numBytes);
basePtr = ptr;
// NOTE: This depends on the individual structs being sufficiently aligned in order to not
// cause any misalignment here. TriggerState, InteractionState, and BindingState all
// contain doubles so put them first in memory to make sure they get proper alignment.
actionStates = (TriggerState*)ptr; ptr += actionCount * sizeof(TriggerState);
interactionStates = (InteractionState*)ptr; ptr += interactionCount * sizeof(InteractionState);
bindingStates = (BindingState*)ptr; ptr += bindingCount * sizeof(BindingState);
mapIndices = (ActionMapIndices*)ptr; ptr += mapCount * sizeof(ActionMapIndices);
controlMagnitudes = (float*)ptr; ptr += controlCount * sizeof(float);
compositeMagnitudes = (float*)ptr; ptr += compositeCount * sizeof(float);
controlIndexToBindingIndex = (int*)ptr; ptr += controlCount * sizeof(int);
controlGroupingAndComplexity = (ushort*)ptr; ptr += controlCount * sizeof(ushort) * 2;
actionBindingIndicesAndCounts = (ushort*)ptr; ptr += actionCount * sizeof(ushort) * 2;
actionBindingIndices = (ushort*)ptr; ptr += bindingCount * sizeof(ushort);
enabledControls = (int*)ptr; ptr += (controlCount + 31) / 32 * sizeof(int);
}
public void Dispose()
{
if (basePtr == null)
return;
UnsafeUtility.Free(basePtr, Allocator.Persistent);
basePtr = null;
actionStates = null;
interactionStates = null;
bindingStates = null;
mapIndices = null;
controlMagnitudes = null;
compositeMagnitudes = null;
controlIndexToBindingIndex = null;
controlGroupingAndComplexity = null;
actionBindingIndices = null;
actionBindingIndicesAndCounts = null;
mapCount = 0;
actionCount = 0;
bindingCount = 0;
controlCount = 0;
interactionCount = 0;
compositeCount = 0;
}
public void CopyDataFrom(UnmanagedMemory memory)
{
Debug.Assert(memory.basePtr != null, "Given struct has no allocated data");
// Even if a certain array is empty (e.g. we have no controls), we set the pointer
// in Allocate() to something other than null.
UnsafeUtility.MemCpy(mapIndices, memory.mapIndices, memory.mapCount * sizeof(ActionMapIndices));
UnsafeUtility.MemCpy(actionStates, memory.actionStates, memory.actionCount * sizeof(TriggerState));
UnsafeUtility.MemCpy(bindingStates, memory.bindingStates, memory.bindingCount * sizeof(BindingState));
UnsafeUtility.MemCpy(interactionStates, memory.interactionStates, memory.interactionCount * sizeof(InteractionState));
UnsafeUtility.MemCpy(controlMagnitudes, memory.controlMagnitudes, memory.controlCount * sizeof(float));
UnsafeUtility.MemCpy(compositeMagnitudes, memory.compositeMagnitudes, memory.compositeCount * sizeof(float));
UnsafeUtility.MemCpy(controlIndexToBindingIndex, memory.controlIndexToBindingIndex, memory.controlCount * sizeof(int));
UnsafeUtility.MemCpy(controlGroupingAndComplexity, memory.controlGroupingAndComplexity, memory.controlCount * sizeof(ushort) * 2);
UnsafeUtility.MemCpy(actionBindingIndicesAndCounts, memory.actionBindingIndicesAndCounts, memory.actionCount * sizeof(ushort) * 2);
UnsafeUtility.MemCpy(actionBindingIndices, memory.actionBindingIndices, memory.bindingCount * sizeof(ushort));
UnsafeUtility.MemCpy(enabledControls, memory.enabledControls, (memory.controlCount + 31) / 32 * sizeof(int));
}
public UnmanagedMemory Clone()
{
if (!isAllocated)
return new UnmanagedMemory();
var clone = new UnmanagedMemory();
clone.Allocate(
mapCount: mapCount,
actionCount: actionCount,
controlCount: controlCount,
bindingCount: bindingCount,
interactionCount: interactionCount,
compositeCount: compositeCount);
clone.CopyDataFrom(this);
return clone;
}
}
#region Global State
/// <summary>
/// Global state containing a list of weak references to all action map states currently in the system.
/// </summary>
/// <remarks>
/// When the control setup in the system changes, we need a way for control resolution that
/// has already been done to be invalidated and redone. We also want a way to find all
/// currently enabled actions in the system.
///
/// Both of these needs are served by this global list.
/// </remarks>
internal struct GlobalState
{
internal InlinedArray<GCHandle> globalList;
internal CallbackArray<Action<object, InputActionChange>> onActionChange;
internal CallbackArray<Action<object>> onActionControlsChanged;
}
internal static GlobalState s_GlobalState;
internal static ISavedState SaveAndResetState()
{
// Save current state
var savedState = new SavedStructState<GlobalState>(
ref s_GlobalState,
(ref GlobalState state) => s_GlobalState = state, // restore
() => ResetGlobals()); // static dispose
// Reset global state
s_GlobalState = default;
return savedState;
}
private void AddToGlobalList()
{
CompactGlobalList();
var handle = GCHandle.Alloc(this, GCHandleType.Weak);
s_GlobalState.globalList.AppendWithCapacity(handle);
}
private void RemoveMapFromGlobalList()
{
var count = s_GlobalState.globalList.length;
for (var i = 0; i < count; ++i)
if (s_GlobalState.globalList[i].Target == this)
{
s_GlobalState.globalList[i].Free();
s_GlobalState.globalList.RemoveAtByMovingTailWithCapacity(i);
break;
}
}
/// <summary>
/// Remove any entries for states that have been reclaimed by GC.
/// </summary>
private static void CompactGlobalList()
{
var length = s_GlobalState.globalList.length;
var head = 0;
for (var i = 0; i < length; ++i)
{
var handle = s_GlobalState.globalList[i];
if (handle.IsAllocated && handle.Target != null)
{
if (head != i)
s_GlobalState.globalList[head] = handle;
++head;
}
else
{
if (handle.IsAllocated)
s_GlobalState.globalList[i].Free();
s_GlobalState.globalList[i] = default;
}
}
s_GlobalState.globalList.length = head;
}
internal void NotifyListenersOfActionChange(InputActionChange change)
{
for (var i = 0; i < totalMapCount; ++i)
{
var map = maps[i];
if (map.m_SingletonAction != null)
{
NotifyListenersOfActionChange(change, map.m_SingletonAction);
}
else if (map.m_Asset == null)
{
NotifyListenersOfActionChange(change, map);
}
else
{
NotifyListenersOfActionChange(change, map.m_Asset);
return;
}
}
}
internal static void NotifyListenersOfActionChange(InputActionChange change, object actionOrMapOrAsset)
{
Debug.Assert(actionOrMapOrAsset != null, "Should have action or action map or asset object to notify about");
Debug.Assert(actionOrMapOrAsset is InputAction || (actionOrMapOrAsset as InputActionMap)?.m_SingletonAction == null,
"Must not send notifications for changes made to hidden action maps of singleton actions");
DelegateHelpers.InvokeCallbacksSafe(ref s_GlobalState.onActionChange, actionOrMapOrAsset, change, "onActionChange");
if (change == InputActionChange.BoundControlsChanged)
DelegateHelpers.InvokeCallbacksSafe(ref s_GlobalState.onActionControlsChanged, actionOrMapOrAsset, "onActionControlsChange");
}
/// <summary>
/// Nuke global state we have to keep track of action map states.
/// </summary>
private static void ResetGlobals()
{
DestroyAllActionMapStates();
for (var i = 0; i < s_GlobalState.globalList.length; ++i)
if (s_GlobalState.globalList[i].IsAllocated)
s_GlobalState.globalList[i].Free();
s_GlobalState.globalList.length = 0;
s_GlobalState.onActionChange.Clear();
s_GlobalState.onActionControlsChanged.Clear();
}
// Walk all maps with enabled actions and add all enabled actions to the given list.
internal static int FindAllEnabledActions(List<InputAction> result)
{
var numFound = 0;
var stateCount = s_GlobalState.globalList.length;
for (var i = 0; i < stateCount; ++i)
{
var handle = s_GlobalState.globalList[i];
if (!handle.IsAllocated)
continue;
var state = (InputActionState)handle.Target;
if (state == null)
continue;
var mapCount = state.totalMapCount;
var maps = state.maps;
for (var n = 0; n < mapCount; ++n)
{
var map = maps[n];
if (!map.enabled)
continue;
var actions = map.m_Actions;
var actionCount = actions.Length;
if (map.m_EnabledActionsCount == actionCount)
{
result.AddRange(actions);
numFound += actionCount;
}
else
{
var actionStartIndex = state.mapIndices[map.m_MapIndexInState].actionStartIndex;
for (var k = 0; k < actionCount; ++k)
{
if (state.actionStates[actionStartIndex + k].phase != InputActionPhase.Disabled)
{
result.Add(actions[k]);
++numFound;
}
}
}
}
}
return numFound;
}
////TODO: when re-resolving, we need to preserve InteractionStates and not just reset them
/// <summary>
/// Deal with the fact that the control setup in the system may change at any time and can affect
/// actions that had their controls already resolved.
/// </summary>
/// <remarks>
/// Note that this method can NOT deal with changes other than the control setup in the system
/// changing. Specifically, it will NOT handle configuration changes in action maps (e.g. bindings
/// being altered) correctly.
///
/// We get called from <see cref="InputManager"/> directly rather than hooking into <see cref="InputSystem.onDeviceChange"/>
/// so that we're not adding needless calls for device changes that are not of interest to us.
/// </remarks>
internal static void OnDeviceChange(InputDevice device, InputDeviceChange change)
{
Debug.Assert(device != null, "Device is null");
////REVIEW: should we ignore disconnected devices in InputBindingResolver?
Debug.Assert(
change == InputDeviceChange.Added || change == InputDeviceChange.Removed ||
change == InputDeviceChange.UsageChanged || change == InputDeviceChange.ConfigurationChanged ||
change == InputDeviceChange.SoftReset || change == InputDeviceChange.HardReset,
"Should only be called for relevant changes");
for (var i = 0; i < s_GlobalState.globalList.length; ++i)
{
var handle = s_GlobalState.globalList[i];
if (!handle.IsAllocated || handle.Target == null)
{
// Stale entry in the list. State has already been reclaimed by GC. Remove it.
if (handle.IsAllocated)
s_GlobalState.globalList[i].Free();
s_GlobalState.globalList.RemoveAtWithCapacity(i);
--i;
continue;
}
var state = (InputActionState)handle.Target;
// If this state is not affected by the change, skip.
var needsFullResolve = true;
switch (change)
{
case InputDeviceChange.Added:
if (!state.CanUseDevice(device))
continue;
needsFullResolve = false;
break;
case InputDeviceChange.Removed:
if (!state.IsUsingDevice(device))
continue;
// If the device is listed in a device mask (on either a map or an asset) in the
// state, remove it (see Actions_WhenDeviceIsRemoved_DeviceIsRemovedFromDeviceMask).
for (var n = 0; n < state.totalMapCount; ++n)
{
var map = state.maps[n];
map.m_Devices.Remove(device);
map.asset?.m_Devices.Remove(device);
}
needsFullResolve = false;
break;
// NOTE: ConfigurationChanges can affect display names of controls which may make a device usable that
// we didn't find anything usable on before.
case InputDeviceChange.ConfigurationChanged:
case InputDeviceChange.UsageChanged:
if (!state.IsUsingDevice(device) && !state.CanUseDevice(device))
continue;
// Full resolve necessary!
break;
// On reset, cancel all actions currently in progress from the device that got reset.
// If we simply let change monitors trigger, we will respond to things like button releases
// that are in fact just resets of buttons to their default state.
case InputDeviceChange.SoftReset:
case InputDeviceChange.HardReset:
if (!state.IsUsingDevice(device))
continue;
state.ResetActionStatesDrivenBy(device);
continue; // No re-resolving necessary.
}
// Trigger a lazy-resolve on all action maps in the state.
for (var n = 0; n < state.totalMapCount; ++n)
{
if (state.maps[n].LazyResolveBindings(fullResolve: needsFullResolve))
{
// Map has chosen to resolve right away. This will resolve bindings for *all*
// maps in the state, so we're done here.
break;
}
}
}
}
internal static void DeferredResolutionOfBindings()
{
++InputActionMap.s_DeferBindingResolution;
try
{
for (var i = 0; i < s_GlobalState.globalList.length; ++i)
{
var handle = s_GlobalState.globalList[i];
if (!handle.IsAllocated || handle.Target == null)
{
// Stale entry in the list. State has already been reclaimed by GC. Remove it.
if (handle.IsAllocated)
s_GlobalState.globalList[i].Free();
s_GlobalState.globalList.RemoveAtWithCapacity(i);
--i;
continue;
}
var state = (InputActionState)handle.Target;
for (var n = 0; n < state.totalMapCount; ++n)
state.maps[n].ResolveBindingsIfNecessary();
}
}
finally
{
--InputActionMap.s_DeferBindingResolution;
}
}
internal static void DisableAllActions()
{
for (var i = 0; i < s_GlobalState.globalList.length; ++i)
{
var handle = s_GlobalState.globalList[i];
if (!handle.IsAllocated || handle.Target == null)
continue;
var state = (InputActionState)handle.Target;
var mapCount = state.totalMapCount;
var maps = state.maps;
for (var n = 0; n < mapCount; ++n)
{
maps[n].Disable();
Debug.Assert(!maps[n].enabled, "Map is still enabled after calling Disable");
}
}
}
/// <summary>
/// Forcibly destroy all states currently on the global list.
/// </summary>
/// <remarks>
/// We do this when exiting play mode in the editor to make sure we are cleaning up our
/// unmanaged memory allocations.
/// </remarks>
internal static void DestroyAllActionMapStates()
{
while (s_GlobalState.globalList.length > 0)
{
var index = s_GlobalState.globalList.length - 1;
var handle = s_GlobalState.globalList[index];
if (!handle.IsAllocated || handle.Target == null)
{
// Already destroyed.
if (handle.IsAllocated)
s_GlobalState.globalList[index].Free();
s_GlobalState.globalList.RemoveAtWithCapacity(index);
continue;
}
var state = (InputActionState)handle.Target;
state.Destroy();
}
}
#endregion
}
}